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1. INTRODUCTION 

Most of the classical results on means can still be found in the 
monographs of Hardy, Littlewood, and Polya [9] and Beckenbach and 
Bellman [ 11. In a recent paper, Brenner and Carlson [S] summarized 
many important means that have been studied in recent years as well as the 
classical one that are discussed in [ 1,9]. Means are also discussed exten- 
sively in the recent book of J. Borwein and P. Borwein [3]. 

In this paper we show how to generate means as optimal solutions of a 
minimization problem (E) with a “distance” function as objective. The 
special feature of this approach is the choice of the “distance” which is 
defined in terms of an Entropy-like function. Accordingly the resulting 
mean is called entropic mean. The motivation for the extremal problem (E) 
is given in Section 2. We show that the entropic mean satisfies the basic 
properties of a general mean; see Theorem 2.1. In Section 3 we present 
many examples demonstrating that all the classical means as well as many 
others, are special cases of entropic means. Comparison theorems are then 
proved in Section 4 and used to derive inequalities between various means. 
In Section 5 we extend our results to derive the entropic mean for random 
variables and show how classical “measures of centrality” used in statistics 
(Expectation, Quantiles, in particular Median) are also special cases of 
entropic means. In Section 6 we consider a new entropy-like distance 
function, which allows us to derive the generalized mean of Hardy- 
Littlewood and Polya (HLP). Finally, in the last section it is shown that 
entropic means are weighted homogeneous means and as such (as shown 
by Brenner and Carlson [S] ) have an interesting asymptotic property, 
originally discovered by Hoehn and Niven [lo] for some special cases of 
power means. 

2. THE ENTROPIC MEAN 

Let a = (a,, . . . . a,) be given strictly positive numbers and let w  = 
(w 1, e-e, w,) be given weights, i.e., x1=, wi = 1, wi > 0, i= 1, . . . . n. 

We define the mean of (a,, .,., a,) as the value x for which the sum of a 
distance from x to each ai denoted “dist”(x, ai) is minimal; i.e., the mean 
is the optimal solution of 

min i wi “dist”(x, a,): XE Iw + := (0, + a) . (El 
i=l 

Note that here, the weights wi give the “relative importance” to the error 
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“dist”(x, ai). The notation “dist”(a, /I) refers here to some measure of 
distance between ~1, /.I > 0, such a measure must satisfy 

“dist”(cc, /I) = 
0 if cr=B 
, o 

if a#B. 

In this paper we investigate the concept of d-divergence (or &relative 
entropy as a possible chaise for “dist”( ., . ). This concept was introduced by 
Csiszar [7] to measure the dissimilarity, or divergence, between two prob- 
ability measures. Let 4: R + + R be a strictly convex differentiable function 
with (0, l] c dom 4 and such that & 1) = 0, #‘( 1) = 0. We denote the 
class of such functions by @. In [7] the “distance” between two discrete 
probability measures was defined as 

; p,qED,= XER”: i 
j= 1 

Adopting this concept, we define the distance from x to ai by 
“dist”{x, ui} := d,(x, a;) := aid(x/ai) for each i = 1, . . . . n. The optimization 
problem (E) is now 

and the resulting optimal solution denoted Z,(a) := %&(a,, . . . . a,) will 
be called the entropic mean of (a,, . . . . a,). The choice of d,(x, ai) as a 
“distance” is supported by the following results. 

LEMMA 2.1. Let 4 E @. Then 

(a) For any PI >/3, 2a>O or O<fi2 <PI da, 

d&L, a) > d,(B,, ~1). (2.1) 

(b) For any ci2 >cr, >B>O or O<cl, <sl, c/3, 

(2.2) 

Proof (a) Since 4 is strictly convex, d+( ., CL) is strictly convex for any 
tl > 0, thus by the gradient inequality for dJ ., c(), 

d,(B,,a)=u/(~)>ix)(~)+(8?-81)(.(~). (2.3) 
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From (a) and #‘( 1) = 0, the second term in the right hand side of (2.1) is 
nonnegative, hence 

(b) Since 4 is strictly convex, using the gradient inequality it is easy 
to verify that d&3, .) is strictly convex for any fi > 0. Then the proof of (2.2) 
follows using the same arguments as in (a). 1 

COROLLARY 2.1. Let 4 E CD and a, /? > 0. Then d,(/?, a) 2 0 with equality 
if and only if a = /3. 

Proof: Since #(l)=O, then d,(cc,a)=O. Set /I2 =p, /?I = LX in (2.1) of 
Lemma 2.1, then d,(/?, a) > dm(a, a) = 0. 1 

Remark 2.1. The differentiability assumption on $ can be relaxed. Since 
4 is convex its left and right derivative b’-(x) and b’+(x) exist and are 
finite and increasing. Moreover the subdifferential of 4 is a&x) = 
[4’- (x), +V+ (x)]. Then Lemma 2.1 remains valid if we substitute 0 E &j( 1) 
for &( 1) in (2.1). The existence of 0 E &j( 1) is guaranteed for all strictly 
convex function d(x) > 0, all x E R + \{ 11; see Example 5.1, Section 5. 

Note that d,(cc, /?) is not a distance in the usual sense; i.e., it is not 
symmetric and does not satisfy the triangle inequality. However, d6 is 
homogeneous, i.e., VA > 0, dJAcc, A/3) = Id4(a, p). (Compare with (6.1).) The 
next result demonstrates that the entropic mean X4 defined as the optimal 
solution of problem (Ed+), posssesses all the essential properties of a general 
mean. 

THEOREM 2.1. Let 4 E @. Then 

such t!:t Th 
ere exists a unique continuous function X, which solves (EdJ 

min {ai}<&&)<ly~, {Ui} 
l<i<n . . 

for all a, > 0. In particular .-?#(a, . . . . ci) = a. 

(ii) The mean X8 is strict, i.e., 

(iii) Xs is homogeneous (scale invariant), i.e., 

%,(Aa) = lx,(a) for all A > 0, ai > 0. 
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(iv) Zf wi = w for all i then f:, is symmetric; i.e., Z,(a,, . . . . a,,) is 
invariant to permutations of the ais > 0. 

(VI X, is isotone; i.e., for all i and fixed { ai};=, > 0, j # i, 
Z4(a,, .-, aj- I ,., 4, I, .-, a,) is an increasing function. 

Proof. (i) Since C#JE @, as a positive combination of strictly convex 
functions, h(x) :=C wiaiqS(x/ai) is strictly convex and then if an optimal 
solution X := Xm exists it is unique. The optimality condition for problem 
( EdJ implies 

g(X) := i Wi@ ; =o. 
i= 1 0 

(2.4) 

Without loss of generality, assume that a, 6 . . . < a,,. We show that for 
any x 4 [a,, a,]: g(x) # 0. If x < ai then (x/a,) < 1 for all i. But 4 is strictly 
convex, hence 4’ is strictly increasing and thus 

Similarly if x >max ai we have g(x) >O. Therefore since g is continuous 
this implies that there exists a continuous function X = ,?#(a,, . . . . a,,) E 
[a,, a,] and such that g(X) = 0. 

(ii) Without loss of generality assume min, G I Gn {ai} = a,, and let 
X = a,. Then from (2.4) and 4’ being strictly increasing with @( 1) = 0, we 
have 

o= i Wiqb’ ; =w,fj’(l)+ i wib’(;)<o 
i=l 0 i=Z I 

and hence a contradiction. With a similar proof X < max{ ai}. 

(iii) For any A> 0, let j be the optimal solution of min 
{X1= 1 Awiai&x/lai): x E IR + }. The optimality condition is x1=, w#( j/La,) 
= 0 which is exactly (2.4) with X = J/A. 

(iv) If wi = w>O for all i then (2.4) is x7= I q5’(Z/ai) =0 which is 
invariant to the permutations of the a;. 

(v) Let x be the optimal solution corresponding to (a,, . . . . ai, . . . . a,) 
and f let the optimal solution corresponding to (a,, . . . . ci,, . . . . a,) with 
Bi > ai and fixed { aj}jf i. Suppose C? < x, then from the optimality condition 
(2.4) for x and 2, and 4’ being strictly increasing we have 

and hence a contradiction. 1 
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Remark 2.2. If 4 is not assumed strictly convex, then X0 is not 
necessarily unique and not necessarily in [min ai, max ai], see Section 3, 
Example 3.6. For such 4 the entropic mean should be redefined as the 
optimal solution of 

min {C w,a,d (t): x E [min ai, max ai] }. 

3. EXAMPLES 

In this section we present may examples demonstrating that classical 
means as well as many others are special cases of entropic means, for 
particular choice of the kernel function 4. In each of the examples below, 
we solve the optimality condition equation 

j ,  -,4’(t)=O. 
I 

(3.1) 

Its solution is denoted by x4(a). In some examples the function 4 will be 
parametrized with one or more parameters a, /?, . . . . and is denoted 4ol,s,.... 
Correspondingly we will denote the entropic mean zQs,.,,(a). We start with 
the four classical means. 

3.1. Arithmetic mean. 4(t) = -log t + t - 1. Then (3.1) yields 
- (C w,a,/f) + 1 = 0, hence Z,(a) = C;=, wiai := A(a). 

3.2. Harmonic mean. 4(t)= (t - 1)2. Then (3.1) yields CI=i wi((x/a;) 
- 1)) = 0, hence T,(a) = (xyC1 (w,/a,))-’ := H(a). 

3.3. Root mean square. d(t) = 1 - 2 fi + t. Then (3.1) yields 
-x;=, wi(ai/x)1’2 + 1 = 0, hence Z+(a) = (z.I=, wiaf’2)2 := R(a). 

3.4. Geometric mean. d(t) = t log t - t + 1. Then (3.1) yields 
C wi log(x/aJ = 0, hence x,(a) = nr= 1 a? := G(a). 

The four previous examples are particular cases of the mean of order p 
which can be obtained as follows: 

3.5. Mean of order p. ~,(t)=(l/(p-l))(t’-P-p)+t, p#l, p>O. 
Then (3.1) yields 

-xppC wiaf+ 1 =O, hence X,(a) = i (i=, Wial)li. 

To extend %,(a) for negative order, one may choose d,(t) = 
(P- tq)/(q- l)+ 1, q>O, q# 1, which yields X,(q)=(Cy=, w,af-q)“(l-q). 
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Note that J&f) = f#& l/t) (hence strictly convex Vt > 0) and i,(t) = d,(t) 
for p = q = i yielding the root mean square R, while q = 2 gives the 
harmonic mean H. A simple application of L’Hospital’s rule shows that the 
arithmetic and geometric mean are re-obtained respectively by choosing for 
4, the limiting cases 

~m,#,(t)=-logt+t-1, lim $,(t)=tlogt-t+l. 
q-1 

3.6. Extreme means. Let 4(t) =max{O, (1 - t)}‘. Then d’(t) = 
-2 max{O, 1 - t}, CyCl wi max(O, 1 - (x/ai)) = 0, hence Z+(a) = 
max, G iGn ai implies 1 - (x/ai) < 0 for all i showing that x6 is optimal. Note 
that here C$ is not strictly convex. Indeed any x z max, <i < n ai is an optimal . . 
solution of problem (E& but following Remark 2.1, in the interval 
[min I<r<nai, max1.i.. .  .  

ai], Xa is uniquely optimal. 

3.7. Lehmer mean [ll]. For O<p< 1, let d,(t)= ((t’-“)/(2-p))- 
((t’-P)/(1-p))+(1/(2-p)(l-p)). Then (3.1) yields xiPPCw,a~-‘- 
xdp C wiay = 0, hence 

Z,(a) = 
I:= 1 wiaf 

Cl= 1 wiaf-“’ 

3.8. Gini mean [S]. For any r, SE [w such that s>O> r or s >03 r 
let ~,,,(t)=((t’-‘-l)/(l-r))-((tl-S-l)/(l-.s)). Then (3.1) yields 
X-~ Cr= 1 wial - x-’ II= 1 wias = 0, hence 

The Lehmer mean and the mean order p are special cases (r, s) = 
(p - 1, p), (0, p), respectively. With J,,,(t) := t~#,,,~( l/t) we obtain the mean 
of order 1 - q(q > 0) for (r, s) = (0, q). 

3.9. Composition of means. Let d(t) = - 3 log t + (t2/3) - f. Then (3.1) 
yields 

i.e., the geometric mean of A and H. 
Note that in two dimensions, n = 2 with w, = w2 = $, Z)(a,, a*) = 

6 = G(a,, a*). Hence different choice of CJ~ (compare with Example 3.4) 
may induce the same mean. 
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4. COMPARISON OF MEANS 

Given two functions 4, II/ in the class CD, can we compare the correspond- 
ing entropic means z?~ and Xti ? 

THEOREM 4.1. Let 4, $ E @ and denote by X,, Xti respectively the corre- 
sponding entropic means. Zf there exists a constant K # 0 such that 

K@(t) G V(t) VtE~+\W (4.1) 

then, 

Proof From the optimality conditions for problems (E,,), (E,,) it 
follows respectively that 

;, wi4’(2)=” 
I 

and 

$l wi*‘(%)=“- 
I 

(4.2) 

Suppose that X, < Z7,. Since II/ is strictly convex +’ is strictly increasing and 
thus using (4.1) we have 

KqY(~)<tj/(~)-~$‘(~) forall i=l,...,n. 

Multiplying by wi > 0 and summing the above inequalities imply 

K i wiqS’ (%) < i w# (%). 
i=l I i= 1 * 

Hence by (4.2) and (4.3), 0~0 a contradiction. 1 

Theorem 4.1 may be useful to derive inequalities. 

EXAMPLE 4.1. We show that the classical inequalities A(a) 2 G(a) 2 
H(a) are an easy consequence of Theorem 4.1. Using Examples 3.1 and 3.4 
with 4(t):=-logt+t-1 and +(t):=tlogt-t+l we have Z,=A and 
)7, = G. The condition (4.1) of Theorem 4.2 is satisfied with K = 1. Indeed, 
by the convexity of t log t it follows that Vt > 0, log t 2 1 - l/t, i.e., 
$‘(t) 2 d’(t) and hence A > G. Using Examples 3.4 and 3.2 with d(t) := 
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tlogt-t+l and Il/(t)=(t-l)* we have x,=G and X,=H. From the 
concavity of log t it follows that Vt > 0, t - 1 B log t; i.e., with K = 2 the 
condition (4.1) is satisfied, i.e., +‘(t) > 2@(t) and hence G > H. 

THEOREM 4.2. Let qS1, c$*E@ and q5i,(t):=@,(t)+(l-1)42(t). Then 
for all 0 < 2 < 1 

min{xd,(a), X4,(a)> <&+,(a) 6 max(&(a), &(a)). 

Proof First note that for all 0 < I < 1, 4;. E @. Now Xs,, is obtained 
from 

iI wi {Vi (2) + t1 -i)4!2 (%)}=O. 

Assume 1,; < min(Z,, , X4,) then since d;, 4; are strictly increasing we have 
with (4.4) 

But from the optimality conditions for X,, and X+2, the left hand of 
(4.5) is equal to zero, hence the contradiction. Similarly for Xmj. > 
maW,,(a), $,(a)). I 

EXAMPLE 4.2. Let dl(t)= -log t + t- 1 and qS2(t) = (t - l)*. Then 
X1, = A(a) and XI2 = H(A). Consider for A= 4, 4),(t) = Q,(t) + (1 - ,l) qi2(t) 

which is the function used in Example 3.9 and so xrni = J;loH(a). 
Indeed as predicted by Theorem 4.2 (since H(a) <A(a)), H(a) < 

,/%?%$G A(a). 

5. ENTROPIC MEAN FOR RANDOM VARIABLES 

Let A be a nonnegative random variable with distribution F and support 
supp A := [a, 81, 0 d CI < fi d + GO. A natural generalization of problem 
C&J is 

where E( .) denotes the mathematical expectation with respect to the 
random variable A with distribution function F( . ). Clearly, the discrete 
case defined in Section 2 corresponds to the discrete random variable A 
with Pr{A = ai} := wi. 
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In the sequel we assume that all the expectations expressions exist 
and are finite. With a similar proof as given in Theorem 2.1 we have the 
following result. 

THEOREM 5.1. Then for any positive random variable A: 

(i) There exist a unique Xm which solves (E,,) such that 

X, l supp A. 

(ii) If A is a degenerate random variable, i.e., A = C where C is a 
positive finite constant, Xs = C. 

(iii) For all ,I > 0, 2,(1A) = Z,(A). 

Following Examples of Section 3, we can derive the associated integral 
means by solving the optimality condition equation 

For example, choosing d as defined in Examples 3.1, 3.2, 3.4, 3.5 one 
obtains respectively: 

(1) The Expectation Xd = E(A) = s t dF(t). 

(2) The Harmonic Expectation Xm = l/E( l/A) = l/s dF(t)/t. 

(3) The Geometric integral mean f, = eElogA = eI’OgrdF(‘). 

(4) The Integral mean of order p: XP = {I tp dF(t)}‘lP, p >O. 

In Section 2, Remark 2.1, we mention that the differentiability assump- 
tion on $ can be relaxed. The next example illustrates the derivation of an 
important “average” concept arising in statistics which is obtained by 
choosing a nondifferentiable kernel 4. 

EXAMPLE 5.1. (8th quantile). Let 

1 
(1 -mt- 1) 

4(t)= f-j(] -5) 
if t>l 
if O<[<l 

(0<8< 1). 

Clearly 4(t) is not differentiable at 5 = 1. Following Remark 2.1, &5( 1) = 
[ - 0, 1 - e], hence 0 E @( 1) and thus the corresponding d,( .,.) satisfies 
Lemma 2.1 and its Corollary. The objective function of problem (Edl) is 

h(x) := Et+ (;) = j; t# (;) dF(t) 

=(1-8)/;(x-t)dF(t)+O/c(t-x)dF(t). 
.x 
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Since F( .) is the distribution function of the positive random variable A 
this can be simplified to 

h(x) = xF(x) -8x-J; t dF(t) + BE(A). 

It follows that h’(Zb) = 0 is simply F(X,) = 8, i.e., XI is the 8th quantile of 
the continuous random variable A. In particular for 19 = i, X9 is the median. 

6. AN EXTREMAL PRINCIPLE FOR THE (HLP) GENERALIZED MEAN 

Means not possessing the properties listed in Theorem 2.1 cannot be 
derived from the solution of problem (Edl) with the entropy type distance 
d,(x, ai) = a,~(x/ai). In particular the generalized man of Hardy, 
Littlewood, and Polya M,(u, w)=$-‘{C~=~ ~,$(a,)}, where + is a 
strictly monotone function with inverse +-I. Indeed this mean is not in 
general homogeneous (scale invariant), As an important example of the 
mean M, which attracted much attention in the literature, we mention the 
Logarithmic mean or Stolarsky mean [6, 13, 141 defined in two variables a, 
b>O, u#b, by 

with $(x) := l/x. A multidimensional version was recently developed in 
[12], see also [3, pp. 269-2711. 

In this section we show that the generalized h4, can be also charac- 
terized as the solution of problem (E,,) but with a different type of an 
entropy like “distance” function D,,( ., . ). 

Let h: R + + R be a strictly convex differentiable function, and let CX, 
fi~lR+. We define 

D,,(a, B) := h(a) - h(B) - (a - S) h’(B). (6.2) 

Then from the gradient inequality for h( .) it follows immediately that: 
D,(cl, b) = 0 if c( = fl and D,(cr, fi) > 0 if c( # /I. We note that when h(t) = 
(t-l)* then Dh(~,j?)=(~-fl)*. Also when h(t)=#(t)=tlogt then 
D,(a, p) = d,(a, /I) = /I log u/p. The function D,(a, p) is not symmetric 
(except for h(t) quadratic), does not satisfy the triangle inequality, and is 
not homogeneous (as d,( .,.) was). Adopting the “distance” D,, problem 
(E,,) is now 

min i wiDh(x, a,): x E R + 
r=l 

(ED,) 
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Substituting Dh(x, ai) = h(x) - h(a,) - (x - ai) /~‘(a,) in the objective 
function of (E,,) we have to solve (since the ai are given numbers) the 
convex minimization problem 

min 
i 

h(x)-x i w,h’(u,):x~R+ . 
i=l 1 

xh - :=~~(a) solves (E,,) if and only if 

h’(Xh)= i Wjh’(Uj). 
i=l 

Since h’ is continuous and strictly increasing in R! + (h being strictly 
convex) it follows from Theorem 82 [9, p. 651, that there is a unique X,, 
solving (6.3) and such that min a, < ?h < max ui, unless the uls are all 
equal. Thus 

%,(a) = (h’)-’ {C wih’(ui)}, 

where (h’)-’ denotes the inverse function of h’. Hence with t,Q := h’, $ is 
strictly monotone and we have characterized the generalized mean (HLP): 
z$(u) = C’{C oiti(“i)>* 

It is important to note that the mean Xti is not necessarily homogeneous 
(while X, was). In fact the only homogeneous means Zti are the means X,, 
obtained with e(t) = tP (see Theorem 84 [9, p. 681) and these have been 
shown to be a special case of entropic means. 

EXAMPLE 6.1. Let h(t) = t log t - (1 + t) log( 1 + t). Then h is strictly 
convex for all t > 0 and h’(t) = log( t/( 1 + t)), (h’)-’ (t) = e’/( 1 + e’). Hence 

?&(a) = 
n;=lU; G(a) 

~~=,(l+ui)“f-~~=,u~=G(l+u)-G(u)’ 

Generalization to the case of random variables can be obtained by 
solving 

min {J ‘(h(x)-h(t)-(x-t)h’(t))dF)(t)):A+ 
c( 

or equivalently 

min h(x)-xJBh’(t)dF(t):xeR+ 
d 
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The solution is X,,(A)= (h’))’ {&W(A)}, i.e., with the notation I,? :=h’ 

An interesting example is when A is a random variable uniformly dis- 
tributed in the interval [a, b], i.e., with density 

if a<t<b 

otherwise. 

Then, 

2&4)=&&z, b)=t,h-’ j” ( :Edt]. 

The choice Ii/(t) = l/t gives the logarithm mean %$(A) = L(a, b). More 
generally, with +(t) = tPel, (p # l), the Stolarsky’s power mean [ 141 is 
recovered 

7. ASYMPTOTIC BEHAVIOR OF ENTROPIC MEANS 

In a recent paper, Hoehn and Niven [lo] discovered that the mean of 
order p 

( > 
IlP 

x,(q, es.9 an)= 1 wiaP 

has the asymptotic property 

xp(al + t, -.., % + <I - 5 + i w,ai, 5++CQ. (7.1) 
I=1 

They proved (7.1) for some special values of p. Their results were extended 
to unweighted power means of all orders by Brenner [S], and for non- 
homogeneous means by Boas and Brenner [2]. A further extension to a 
great variety of homogeneous means, including weighted means is given in 
Brenner and Carlson [S]. 

In this section we show that the entropic means have the Hoehn-Niven 
property. Our result is a direct application of [ 5, Theorem 11. 
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THEOREM 7.1. Let 4 E 0 and assume 4 three times continuously differen- 
tiable in the neighborhood of t = 1. Zf a,, ..,, a, are fixed and 5 + + CO then 

+(a1 + 5, . . . . a,+O=t+ i 1 
wiai + 0 - 0 . 

i=l r 
(7.2) 

Proof: From Theorem 2.1, x+(a) is a homogeneous mean satisfying 
x,(l) :=x,(1, . . . . 1) = 1. We next show that x4 is a weighted mean in the 
sense of Brenner and Carlson [5], i.e., 

2 (1, . ..) l)=wj, j= 1, . . . . n. 
J 

(7.3) 

Indeed the entropic mean x,(a) is the optimal solution of problem (E+) 
and thus satisfies the optimality condition 

iI wif-g=o. I (7.4) 

Differentiating the identity (in terms of a) (7.4) with respect to aj we 
obtain 

~i~,amll(~)=~~“(~)x,(a), j=l,..., n. (7.5) 

Setting ai = 1 for all i= 1, . . . . n and using x,(1)=1, d”(l)>O, and 
C;=i wi = 1, it follows from (7.5) that (ax,/aa,)(l, . . . . l)= wj, j= 1, . . . . n. 

Further, the differentiability assumption of 4 implies that xI( .) is twice 
continuously differentiable in the neighborhood of (1, 1, . . . . 1). Thus, invok- 
ing [5, Theorem 11, the asymptotic result (7.2) follows. 1 
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