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Problem Description

Data: Let a = (a1, ..., an) be strictly positive numbers and let
w = (w1, ...wn) be given weights, i.e.,

∑n
i=1 wi = 1, wi > 0,

i = 1, 2, ..., n.

Problem: Generate means as optimal solutions of the
minimization problem

min{
∑n

i=1 widist(x , ai ) : x ∈ R+} (E)

where wi : ”relative importance” to the error ”dist(x , ai )”.

Solution: x = mean(a1, ..., an)

Idea: Choose ”distance” function → Entropy-like function
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Problem Description

Definition

Let φ : R+ → R be a strictly convex differentiable function with
(0, 1] ⊂ domφ such that φ(1) = 0, φ′(1) = 0. Then φ is called
φ-divergence or φ-relative entropy.

The”distance” between two discrete probability measures is defined
as

Iφ(p, q) :=
∑n

j=1 qjφ(
pj
qj

),

where p, q ∈ Dn = {x ∈ Rn :
∑n

j=1 xj = 1, x > 0}.
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Problem Description

Let dist(x , ai ) := dφ(x , ai ) := aiφ( x
ai

) for each i = 1, ..., n.

Restate the optimization problem (E) as

min{
∑n

i=1 wiaiφ( x
ai

) : x ∈ R+} (Edφ)

Then the optimal solution of (Edφ) is the entropic mean

x̄φ(a) := x̄(a1, ..., an).

Remarks:

Entropic mean possesses all the essential properties of a
general mean.

dφ(x , ai ) is not symmetric, does not satisfy the triangle
inequality but it is homogeneous.
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Motivation

Lemma 1

Let φ ∈ Φ = {φ : R+ → R strictly convex st: φ(1) = 0, φ′(1) = 0}.

Then

(a) For any b2 > b1 ≥ a > 0 or 0 < b2 < b1 ≤ a,

dφ(b2, a) > dφ(b1, a).

(b) For any a2 ≥ a1 > b > 0 or 0 < a2 < a1 < b,

dφ(b, a2) > dφ(b, a1).
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Motivation

Corollary 1

Let φ ∈ Φ and a, b > 0. Then dφ(b, a) ≥ 0 with equality if and
only if a = b.

Proof

Since φ(1) = 0, then dφ(a, a) = aφ(aa) = aφ(1) = 0.
Set b2 = b, b1 = a in Lemma 1(a), then dφ(b, a) > dφ(a, a) = 0.
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Motivation

Theorem 1

Let φ ∈ Φ. Then

(i) There is a unique continuous function x̄φ which solves (Edφ)
such that

min{ai} ≤ x̄φ(a) ≤ max{ai},

for i = 1, 2, ..., n and ai > 0. In particular x̄φ(a, a, ..., a) = a.

(ii) The mean x̄φ is strict, i.e.,

min{ai} < max{ai} ⇒ min{ai} < x̄φ(a) < max{ai}

for i = 1, 2, ..., n.

(iii) x̄φ is homogeneous (scale invariant), i.e.,

x̄φ(λa) = λx̄φ(a)

for λ > 0, ai > 0.
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Motivation

Theorem 1 (Cont.)

(iv) If wi = w for all i then x̄φ is symmetric; i.e.,

x̄φ(a1, a2, ..., an) is invariant to permutations of the ai
′s > 0.

(v) x̄φ is isotone; i.e., for all i and fixed {aj}nj=1 > 0, j 6= i

x̄φ(a1, .., aj−1, · , ai+1, ..., an) is an increasing function.

Remarks:

φ: convex ⇒ x̄φ: unique and x̄φ ∈ [min ai ,max ai ].

Means not possessing the properties of Theorem 1 cannot
derived from the solution of (Edφ) with the entropy type
distance dφ(x , ai ) = aiφ( x

ai
).
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Examples

Classical means as well as many others are special cases of entropic
means, for particular choice of the kernel function φ.

For all the cases below we solve the optimality condition equation∑n
i=1 wiφ

′( x
ai

) = 0 (OC)

(1) Arithmetic mean. Choose φ(t) = −logt + t − 1.

Then by solving the (OC) we get x̄φ(a) =
∑n

i=1 wiai := A(a).

(2) Harmonic mean. Choose φ(t) = (t − 1)2.

Then by solving the (OC) we get
x̄φ(a) = (

∑n
i=1(wi

ai
))−1 := H(a).

(3) Root mean square. Choose φ(t) = 1− 2
√
t + t.

Then by solving the (OC) we get
x̄φ(a) = (

∑n
i=1 wi

√
ai )

2 := R(a).
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Examples (Cont.)

(4) Geometric mean. Choose φ(t) = t log t − t + 1.

Then by solving the (OC) we get x̄φ(a) = Πn
i=1a

wi
i := G (a).

(5) Mean of order p. Choose φp(t) = ( 1
p−1 )(t1−p − p) + t,

p 6= 1, p > 0.

Then by solving the (OC) we get x̄φp(a) = (
∑n

i=1 wia
p
i )

1
p .

To extend x̄φp(a) for negative order, choose

φq(t) = ( t
q−tq
q−1 ) + 1, q 6= 1, q > 0, which yields

x̄φq(a) = (
∑n

i=1 wia
1−q
i )

1
1−q .
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Examples (Cont.)

(6) Composition of means. Let φ(t) = −2
3 logt + ( t

2

3 )− 1
3 .

Then by solving the (OC) we get

x̄φ(a) =

(∑n
i=1 wiai∑n
i=1

wi
ai

) 1
2

=
√

A(a)H(a), i.e, the geometric mean

of A and H.

Note: In two dimensions, n = 2 with w1 = w2 = 1
2 ,

x̄φ(a1, a2) =
√
a1a2 = G (a1, a2).

Hence different choice of φ (compare with the geometric
mean) may induce the same mean.
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Comparison of Means

Theorem 2

Let φ, ψ ∈ Φ and denote by x̄φ, x̄ψrespectively the corresponding
entropic means. If there exists a constant K 6= 0 such that

Kφ′(t) ≤ ψ′(t) ∀t ∈ R+\{1}

then

x̄φ(a) ≥ x̄ψ(a).
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Comparison of Means

Theorem 2 Proof

Proof

From the optimality conditions it follows that∑n
i=1 wiφ

′(
x̄φ
ai

) = 0 and
∑n

i=1 wiψ
′(

x̄ψ
ai

) = 0.

Suppose x̄φ < x̄ψ. By assumption we have that

Kφ′(t) ≤ ψ′(t) ∀t ∈ R+\{1}.

Then Kφ′(
x̄φ
ai

) ≤ ψ′( x̄φai ) < ψ′(
x̄ψ
ai

), since ψ′ is strictly increasing.

Multiplying by wi > 0 and summing the above inequalities imply

K
∑n

i=1 wiφ
′(

x̄φ
ai

) <
∑n

i=1 wiψ
′(

x̄ψ
ai

)⇒ 0 < 0.

Contradiction.

bmaria2@umbc.edu M. Barouti Entropic Means 13/38



Comparison of Means

Example

By using examples (1) and (4) with φ(t) = −logt + t − 1 and
ψ(t) = t log t − t + 1 we have x̄φ = A(a) and x̄ψ = G (a). The
condition of Theorem 2 is satisfied with K = 1, i.e, ψ′(t) ≥ φ′(t).
Hence G (a) ≤ A(a).

Using now examples (2) with z(t) = (t − 1)2, where x̄z = H(a)
and (4). The condition of Theorem 2 is satisfied with K = 2, i.e,
z ′(t) ≥ 2ψ′(t). Hence H(a) ≤ G (a). Thus,

H(a) ≤ G (a) ≤ A(a).

bmaria2@umbc.edu M. Barouti Entropic Means 14/38



Comparison of Means

Theorem 3

Let φ1, φ2 ∈ Φ and φλ(t) := λφ1(t) + (1− λ)φ2(t).

Then for all 0 ≤ λ ≤ 1

min{x̄φ1(a), x̄φ2(a)} ≤ x̄φλ(a) ≤ max{x̄φ1(a), x̄φ2(a)}.
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Comparison of Means

Theorem 3 Proof

Proof

Note 0 ≤ λ ≤ 1 and φλ ∈ Φ.

Now x̄φλ is obtained by solving the (OC):
∑n

i=1 wiφ
′
λ(

x̄φλ
ai

) = 0.
Then ∑n

i=1 wi{λφ′1(
x̄φλ
ai

) + (1− λ)φ′2(
x̄φλ
ai

)} = 0 (1)

Assume x̄φλ < min(x̄φ1 , x̄φ2) then since φ′1, φ
′
2 are strictly

increasing we have with (1)

λ
∑n

i=1 wiφ
′
1(

x̄φ1
ai

) + (1− λ)
∑n

i=1 wiφ
′
2(

x̄φ2
ai

) > 0 (2)
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Comparison of Means

Theorem 3 Proof (Cont.)

But from the (OC) conditions we have that∑n
i=1 wiφ

′
1(

x̄φ1
ai

) = 0

and ∑n
i=1 wiφ

′
2(

x̄φ2
ai

) = 0

Then (2) implies that 0 > 0.

Contradiction.

Similarly for x̄φλ > max(x̄φ1 , x̄φ2).
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Comparison of Means

Example

Let φ1(t) = −logt + t − 1 and φ2(t) = (t − 1)2. Then x̄φ1 = A(a)
x̄φ2 = H(a).

Consider for λ = 2
3 , φλ(t) := λφ1(t) + (1− λ)φ2(t) which is the

function used in example 6 and so x̄φλ =
√

A(a)H(a).

Since H(a) ≤ A(a) then by Theorem 3

H(a) ≤
√
A(a)H(a) ≤ A(a).
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Entropic Mean for Random Variables

Let A be a nonnegative random variable (r.v.) with distribution F
and suppA := [a, b], 0 ≤ a ≤ b ≤ +∞. A natural generalization of

min{
∑n

i=1 wiaiφ( x
ai

) : x ∈ R+} (Edφ)

is

min{E
(
Aφ( x

A)
)

:=
∫ b
a tφ( xt )dF (t) : x ∈ R+},

where E (· ) denotes the mathematical expectation with respect to
the r.v. A with distribution F (· ).

Remark:

(Edφ) corresponds to the discrete r.v. A with

Pr{A = ai} := wi
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Entropic Mean for Random Variables

Theorem 4

Assume that all the expectations expressions exist and are finite.
Similar to Theorem 1 we have the following result.

Then for any positive random variable A:

(i) There exist a unique x̄φ which solves (Edφ) such that

x̄φ ∈ suppA.

(ii) If A is a degenerate r.v, i.e., A = C where C is a positive
finite constant, x̄φ = C .

(iii) For all λ > 0, x̄φ(λA) = λx̄φ(A).
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Entropic Mean for Random Variables

Examples

We can similarly derive the associated integral means by solving
the optimality condition equation∫ b

a φ
′( xt )dF (t) = 0 (OC)

For example, choosing φ as defined in Examples (1), (2), (4) and
(5) one obtains respectively:

(1) The Expectation x̄φ = E (A) =
∫
tdF (t).

(2) The Harmonic Expectation x̄φ = 1
E(1/A) = 1∫ dF (t)

t

.

(3) The Geometric integral mean x̄φ = eE log A = e
∫

log tdF (t).

(4) The Integral mean of order p: x̄φ = {
∫
tpdF (t)}

1
p , p > 0.
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Entropic Mean for Random Variables

This example illustrates the derivation of an important ”average”
concept arising in statistics which is obtained by choosing a
nondifferential kernel φ.

Example (θth quantile)

φ(ξ) =

{
(1− θ)(ξ − 1) if ξ > 1
θ(1− ξ) if 0 < ξ ≤ 1

0 < θ < 1.

Remarks:

φ is not differentiable at ξ = 1

the subdifferential of φ is ϑφ(1) = [−θ, 1− θ], so 0 ∈ ϑφ(1)

dφ(· , · ) satisfies Lemma 1 and Corollary 1
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Entropic Mean for Random Variables

(Cont.)

The objective function of problem (Edφ) is

h(x) := E (Aφ( x
A)) =

∫∞
0 tφ( xt )dF (t) =

(1− θ)
∫ x

0 (x − t)dF (t) + θ
∫∞
x (t − x)dF (t).

Since F (· ) is the distribution function of the positive random
variable A then

∫∞
0 dF (t) = 1. Hence,

h(x) = xF (x)− θx −
∫ x

0 tdF (t) + θE (A).

It follows that h′(x̄φ) = 0 is simply F (x̄φ) = θ.

Note: x̄φ is the θth quantile of the continuous r.v. A.
In particular, for θ = 1

2 , x̄φ is the median.
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An Extremal Principle for the (HLP) Generalized Mean

Consider the generalized mean of Hardy, Littlewood, and Polya
(HLP)

Mψ(a,w) = ψ−1{
∑n

i=1 wiψ(ai )},

where ψ is strictly monotone function with inverse ψ−1.

Note: This mean is not scale invariant.

Take for example the Logarithmic mean defined in two variables
a, b > 0, a 6= b, by

L(a, b) :=
(

log b−log a
b−a

)−1
= ψ−1

(∫ b
a ψ(x)dx

b−a

)
where ψ(x) := 1

x .
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An Extremal Principle for the (HLP) Generalized Mean

Goal: Consider a new entropy-like distance function ⇒ derive the
generalized mean of HLP.

Let h : R+ → R be a strictly convex differentiable function and let
α, β ∈ R+. We define

Dh(α, β) := h(α)− h(β)− (α− β)h′(β).

Since h is convex ⇒ gradient inequality holds for h(· ).

Then it follows that Dh(α, β) = 0 if α = β and Dh(α, β) > 0 if
α 6= β.

Remark:

Dh(α, β) is not symmetric (except for h(t) quadratic), does
not satisfy the triangle inequality and is not homogeneous (as
dφ(· , · ) was).
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An Extremal Principle for the (HLP) Generalized Mean

Problem: Adapting the ”distance ” Dh as

Dh(x , ai ) := h(x)− h(ai )− (x − ai )h
′(ai )

problem (EDh
) is now

min{
∑n

i=1 wiDh(x , ai ) : x ∈ R+} (EDh
).

Solution: By substituting Dh(x , ai ) in the objective function of
(EDh

) we have to solve the convex minimization problem

min{h(x)− x
∑n

i=1 wih
′(ai ) : x ∈ R+},

since ai are given numbers and
∑n

i=1 wi = 1.
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An Extremal Principle for the (HLP) Generalized Mean

Then x̄h := x̄h(a) solves (EDh
) if and only if

h′(x̄h) =
∑n

i=1 wih
′(ai ) (3)

h′ is strictly convex differentiable function ⇒ h′ is continuous
and strictly increasing in R+

By Theorem 82 [1, p.65] there is a unique x̄h solving (3) and

min ai ≤ x̄h ≤ max ai .

Thus

x̄h(a) = (h′)−1{
∑

wih
′(ai )}.

[1] G.H. Hardy, J.E Littlewood, and G. Polya, ”Inequalities,” 2nd edition, Cambridge Univ. Press, London,
1959.
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An Extremal Principle for the (HLP) Generalized Mean

Call ψ := h′. Then ψ is strictly monotone and

x̄ψ(a) = ψ−1{
∑

wiψ(ai )} (HLP)

Remarks:

x̄ψ is not necessarily homogeneous (while x̄φ was)

the only homogeneous means x̄ψ are the means x̄p obtained
with ψ(t) = tp (see Theorem 84 [1, p.68])

ψ(t) = tp : special case of entropic means

[1] G.H. Hardy, J.E Littlewood, and G. Polya, ”Inequalities,” 2nd edition, Cambridge Univ. Press, London,
1959
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An Extremal Principle for the (HLP) Generalized Mean

Generalization to the case of random variables can be obtained by
solving

min{
∫ β
α Dh(x , t)dF (t) : x ∈ R+},

where

Dh(x , t) := h(x)− h(t)− (x − t)h′(t).

Equivalently,

min{h(x)− x
∫ β
α h′(t)dF (t) : x ∈ R+}.
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An Extremal Principle for the (HLP) Generalized Mean

The solution is

x̄h(A) = (h′)−1{E [h′(A)]}.

Note: suppA = [α, β]

Call ψ := h′ then

x̄ψ(A) = (ψ)−1{E [ψ(A)]} = ψ−1{
∫ β
α ψ(t)dF (t)}.
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An Extremal Principle for the (HLP) Generalized Mean

Example

Let A be a r.v. uniformly distributed to the interval [a, b], i.e, with
density

f (t) =

{
1

b−a , a ≤ t ≤ b

0 , else

Then

x̄ψ(A) = x̄ψ(a, b) = ψ−1{
∫ β
α ψ(t)dF (t) = ψ−1{

∫ b
a
ψ(t)
b−adt}.

Note: dF (t) = f (t)dt = 1
b−adt when a ≤ t ≤ b.
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An Extremal Principle for the (HLP) Generalized Mean

Example (Cont.)

Choose now ψ(t) = 1
t . Then

∫ b
a
ψ(t)
b−adt =

∫ b
a

1
t(b−a)dt =

ln( b
a

)

b−a .

The solution will be

x̄ψ(A) = x̄ψ(a, b) = ψ−1{
∫ b
a
ψ(t)
b−adt} = L(a, b).

More generally, with ψ(t) = tp−1 , (p 6= 1), the Stolarsky’s power
mean is recovered

x̄ψ(A) = Sp(a, b) = { bp−ap
p(b−a)}

1
(p−1) ,

since
∫ β
α ψ(t)dF (t) =

∫ b
a

tp−1

b−a = bp−ap
p(b−a) and ψ−1(t) = t

1
(p−1) .
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Asymptotic Behavior of Entropic Means

In [2] Hoehn and Niven discovered that the mean of order p

xp(a1, a2, ..., an) =
(∑n

i=1 wia
p
i

) 1
p

has the asymptotic property

xp(a1 + ξ, a2 + ξ, ..., an + ξ)− ξ →
∑n

i=1 wiai , (4)

ξ → +∞.

Remarks:

(4) is proved for some specials values of p

Extended to unweighted power means of all orders by [3] , and
for non-homogeneous means by [4]

Extension to a great variety of homogeneous means, including
weighted means is given in [5]

[2] L. Hoehn and I. Niven, Averages on the move, Math. Mag. 58 (1985), 151-156

[3] J. L. Brenner, Limits of means for large values of the variables, Pi Mu Epsilon J. 8(1985), 160-163.

[4] R. P. Boas and J. L. Brenner, Asymptotic behavior of inhomogeneous means, J. Math. Anal. Appl. 123
(1987), 262-264.

[5] J. L. Brenner and B. C. Carlson, Homogeneous mean values: Weightsand asymptotics, J. Math. Anal.
Appl. 123 (1987), 265-280.
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Asymptotic Behavior of Entropic Means

Theorem 5

Next Theorem shows that the entropic means have the
Hoehn-Niven property. This result is direct application of [5,
Theorem 1].

Let φ ∈ Φ, φ ∈ C 3 in the neighborhood of t = 1. If a1, a2, ..., an
are fixed and ξ →∞ then

xφ(a1 + ξ, ..., an + ξ) = ξ +
∑n

i=1 wiai + O( 1
ξ ).

[5] J. L. Brenner and B. C. Carlson, Homogeneous mean values: Weightsand asymptotics, J. Math. Anal.
Appl. 123 (1987), 265-280.
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Asymptotic Behavior of Entropic Means

Theorem 3 Proof

Proof

By Theorem 1, xφ(a) is a homogeneous mean satisfying
xφ(1) := xφ(1, 1, ..., 1) = 1.

Next we can see that xφ is a weighted mean in the sense of
Brenner and Carlson [5] , i.e.,

∂xφ
∂aj

(1, 1, ..., 1) = wj , j = 1, 2, ..., n.

[5] J. L. Brenner and B. C. Carlson, Homogeneous mean values: Weightsand asymptotics, J. Math. Anal.
Appl. 123 (1987), 265-280.
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Asymptotic Behavior of Entropic Means

Theorem 3 Proof (Cont.)

Indeed the entropic mean xφ(a) is the optimal solution of the
problem

min{
∑n

i=1 wiaiφ( x
ai

) : x ∈ R+} (Edφ)

Thus it satisfies the optimality condition (OC)∑n
i=1 wiφ

′( x
ai

) = 0.

Differentiating the identity with respect to aj we obtain

∂xφ(a)

∂aj

n∑
i=1

wi

ai
φ′′
(
xφ(a)

ai

)
=

wj

a2
j

φ′′
(
xφ(a)

aj

)
xφ(a) , j = 1, 2, ..., n. (5)
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Asymptotic Behavior of Entropic Means

Theorem 3 Proof (Cont.)

Setting ai = 1 for all i = 1, 2, ..., n and using xφ(1) = 1, φ′′(1) > 0
and

∑n
i=1 wi = 1, it follows from (5) that

∂xφ
∂aj

(1, 1, ..., 1) = wj , j = 1, 2, ..., n.

Also, the differentiability assumption of φ implies that xφ(·) is twice
continuously differentiable in the neighborhood of (1, 1, ..., 1).

Thus, invoking [5, Theorem 1], the asymptotic result

xφ(a1 + ξ, ..., an + ξ) = ξ +
∑n

i=1 wiai + O( 1
ξ )

follows.
[5] J. L. Brenner and B. C. Carlson, Homogeneous mean values: Weightsand asymptotics, J. Math. Anal.

Appl. 123 (1987), 265-280.
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Summary

Generate means as optimal solutions of minimization problem
E , where the distance function is the Entropy-like function
and the resulting mean is called Entropic mean.
Entropic mean satisfies the basic properties of a general mean
(see proof of Theorem 1).
All classical means as well as many others are special cases of
entropic means.
Comparison Thms used to derive inequalities between various
means.
Derive entropic mean for random variables. Also, show how
classical ”measures of centrality” (Expectation, Quantiles,etc)
are special cases of Entropic means.
Use new entropy-like function to derive the generalized mean
of HLP.
Entopic means are weighted homogeneous means and have an
interesting asymptotic property.
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QUESTIONS?
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