Entropic Means

Maria Barouti

University of Maryland Baltimore County Department of Mathematics and Statistics bmaria2@umbc.edu

October 22, 2015

Problem: Generate means as optimal solutions of the minimization problem

$$\min\{\sum_{i=1}^n w_i \operatorname{dist}(x, a_i) : x \in \mathbb{R}_+\} (\mathsf{E})$$

where w_i : "relative importance" to the error "dist (x, a_i) ".

Problem: Generate means as optimal solutions of the minimization problem

$$\min\{\sum_{i=1}^{n} w_i \operatorname{dist}(x, a_i) : x \in \mathbb{R}_+\} (\mathsf{E})$$

where w_i : "relative importance" to the error "dist (x, a_i) ".

Solution: $x = mean(a_1, ..., a_n)$

Problem: Generate means as optimal solutions of the minimization problem

$$\min\{\sum_{i=1}^{n} w_i dist(x, a_i) : x \in \mathbb{R}_+\} (\mathsf{E})$$

where w_i : "relative importance" to the error "dist (x, a_i) ".

Solution: $x = mean(a_1, ..., a_n)$

Idea: Choose "distance" function

Problem: Generate means as optimal solutions of the minimization problem

$$\min\{\sum_{i=1}^{n} w_i \operatorname{dist}(x, a_i) : x \in \mathbb{R}_+\} (\mathsf{E})$$

where w_i : "relative importance" to the error "dist (x, a_i) ".

Solution: $x = mean(a_1, ..., a_n)$

Idea: Choose "distance" function \rightarrow Entropy-like function

Definition

Let $\phi : \mathbb{R}_+ \to \mathbb{R}$ be a strictly convex differentiable function with $(0,1] \subset \operatorname{dom}\phi$ such that $\phi(1) = 0$, $\phi'(1) = 0$. Then ϕ is called ϕ -divergence or ϕ -relative entropy.

The distance between two discrete probability measures is defined as

$$I_{\phi}(p,q) := \sum_{j=1}^{n} q_j \phi(\frac{p_j}{q_j}),$$

where $p, q \in D_n = \{x \in \mathbb{R}^n : \sum_{j=1}^n x_j = 1, x > 0\}.$

Let dist
$$(x, a_i) := d_{\phi}(x, a_i) := a_i \phi(\frac{x}{a_i})$$
 for each $i = 1, ..., n$.

Restate the optimization problem (E) as

$$\min\{\sum_{i=1}^n w_i a_i \phi(\frac{x}{a_i}) : x \in \mathbb{R}_+\} \ (E_{d_{\phi}})$$

Then the optimal solution of $(E_{d_{\phi}})$ is the entropic mean

$$\bar{x}_{\phi}(a) := \bar{x}(a_1, ..., a_n).$$

Remarks:

- Entropic mean possesses all the essential properties of a general mean.
- d_φ(x, a_i) is not symmetric, does not satisfy the triangle inequality but it is homogeneous.

Lemma 1

Let $\phi \in \Phi = \{\phi : \mathbb{R}_+ \to \mathbb{R} \text{ strictly convex st: } \phi(1) = 0, \phi'(1) = 0\}.$ Then

• (a) For any
$$b_2 > b_1 \ge a > 0$$
 or $0 < b_2 < b_1 \le a,$
 $d_\phi(b_2,a) > d_\phi(b_1,a).$

• (b) For any
$$a_2 \geq a_1 > b > 0$$
 or $0 < a_2 < a_1 < b$, $d_\phi(b,a_2) > d_\phi(b,a_1).$

Let $\phi \in \Phi$ and a, b > 0. Then $d_{\phi}(b, a) \ge 0$ with equality if and only if a = b.

Proof

Since
$$\phi(1) = 0$$
, then $d_{\phi}(a, a) = a\phi(\frac{a}{a}) = a\phi(1) = 0$.
Set $b_2 = b$, $b_1 = a$ in Lemma 1(a), then $d_{\phi}(b, a) > d_{\phi}(a, a) = 0$.

Theorem 1

Let $\phi \in \Phi$. Then

(i) There is a unique continuous function \bar{x}_{ϕ} which solves $(E_{d_{\phi}})$ such that

$$\min\{a_i\} \leq \bar{x}_{\phi}(a) \leq \max\{a_i\},\$$

for i = 1, 2, ..., n and $a_i > 0$. In particular $\bar{x}_{\phi}(a, a, ..., a) = a$.

(ii) The mean \bar{x}_{ϕ} is strict, i.e.,

 $\min\{a_i\} < \max\{a_i\} \Rightarrow \min\{a_i\} < \bar{x}_{\phi}(a) < \max\{a_i\}$

for i = 1, 2, ..., n.

(iii) \bar{x}_{ϕ} is homogeneous (scale invariant), i.e.,

$$ar{x}_{\phi}(\lambda a) = \lambda ar{x}_{\phi}(a)$$

for $\lambda > 0$, $a_i > 0$.

Motivation

Theorem 1 (Cont.)

(iv) If $w_i = w$ for all *i* then \bar{x}_{ϕ} is symmetric; i.e.,

 $\bar{x}_{\phi}(a_1, a_2, ..., a_n)$ is invariant to permutations of the a_i 's > 0.

(v)
$$\bar{x}_{\phi}$$
 is isotone; i.e., for all *i* and fixed $\{a_j\}_{j=1}^n > 0, j \neq i$

 $\bar{x}_{\phi}(a_1,..,a_{j-1},\cdot,a_{i+1},...,a_n)$ is an increasing function.

Remarks:

- ϕ : convex $\Rightarrow \bar{x}_{\phi}$: unique and $\bar{x}_{\phi} \in [\min a_i, \max a_i]$.
- Means not possessing the properties of Theorem 1 cannot derived from the solution of $(E_{d_{\phi}})$ with the entropy type distance $d_{\phi}(x, a_i) = a_i \phi(\frac{x}{a_i})$.

Classical means as well as many others are special cases of entropic means, for particular choice of the kernel function ϕ .

For all the cases below we solve the optimality condition equation

$$\sum_{i=1}^{n} w_i \phi'(\frac{x}{a_i}) = 0 \quad (OC)$$

(1) Arithmetic mean. Choose $\phi(t) = -\log t + t - 1$. Then by solving the (OC) we get $\bar{x}_{\phi}(a) = \sum_{i=1}^{n} w_i a_i := A(a)$.

(2) Harmonic mean. Choose $\phi(t) = (t-1)^2$.

Then by solving the (OC) we get $\bar{x}_{\phi}(a) = (\sum_{i=1}^{n} (\frac{w_i}{a_i}))^{-1} := H(a).$

(3) Root mean square. Choose $\phi(t) = 1 - 2\sqrt{t} + t$.

Then by solving the (OC) we get $\bar{x}_{\phi}(a) = (\sum_{i=1}^{n} w_i \sqrt{a_i})^2 := R(a).$

(4) Geometric mean. Choose $\phi(t) = t \log t - t + 1$.

Then by solving the (OC) we get $\bar{x}_{\phi}(a) = \prod_{i=1}^{n} a_i^{w_i} := G(a)$. (5) Mean of order p. Choose $\phi_p(t) = (\frac{1}{p-1})(t^{1-p}-p) + t$, $p \neq 1, p > 0$.

Then by solving the (OC) we get $\bar{x}_{\phi_p}(a) = (\sum_{i=1}^n w_i a_i^p)^{\frac{1}{p}}$. To extend $\bar{x}_{\phi_p}(a)$ for negative order, choose

$$\phi_q(t) = (rac{t^q - tq}{q - 1}) + 1$$
, $q \neq 1, q > 0$, which yields
 $ar{x}_{\phi_q}(a) = (\sum_{i=1}^n w_i a_i^{1-q})^{rac{1}{1-q}}.$

(6) Composition of means. Let $\phi(t) = -\frac{2}{3}\log t + (\frac{t^2}{3}) - \frac{1}{3}$. Then by solving the (OC) we get $\bar{x}_{\phi}(a) = \left(\frac{\sum_{i=1}^{n} w_i a_i}{\sum_{i=1}^{n} \frac{w_i}{a_i}}\right)^{\frac{1}{2}} = \sqrt{A(a)H(a)}$, i.e, the geometric mean of A and H.

Note: In two dimensions, n = 2 with $w_1 = w_2 = \frac{1}{2}$, $\bar{x}_{\phi}(a_1, a_2) = \sqrt{a_1 a_2} = G(a_1, a_2)$.

Hence different choice of ϕ (compare with the geometric mean) may induce the same mean.

Theorem 2

Let ϕ , $\psi \in \Phi$ and denote by \bar{x}_{ϕ} , \bar{x}_{ψ} respectively the corresponding entropic means. If there exists a constant $K \neq 0$ such that

$$egin{aligned} &\mathcal{K}\phi'(t)\leq\psi'(t) \ \ orall t\in\mathbb{R}_+ackslash\{1\} \end{aligned}$$

then

$$\bar{x}_{\phi}(a) \geq \bar{x}_{\psi}(a).$$

Theorem 2 Proof

Proof

From the optimality conditions it follows that

$$\sum_{i=1}^n w_i \phi'(\frac{\bar{x}_{\phi}}{a_i}) = 0$$
 and $\sum_{i=1}^n w_i \psi'(\frac{\bar{x}_{\psi}}{a_i}) = 0$.

Suppose $ar{x}_\phi < ar{x}_\psi.$ By assumption we have that

$$K\phi'(t) \leq \psi'(t) \ \ orall t \in \mathbb{R}_+ ackslash \{1\}.$$

Then $K\phi'(\frac{\bar{x}_{\phi}}{a_i}) \leq \psi'(\frac{\bar{x}_{\phi}}{a_i}) < \psi'(\frac{\bar{x}_{\psi}}{a_i})$, since ψ' is strictly increasing. Multiplying by $w_i > 0$ and summing the above inequalities imply

$$K\sum_{i=1}^n w_i\phi'(\frac{\bar{x}_{\phi}}{a_i}) < \sum_{i=1}^n w_i\psi'(\frac{\bar{x}_{\psi}}{a_i}) \Rightarrow 0 < 0.$$

Contradiction.

Example

By using examples (1) and (4) with $\phi(t) = -\log t + t - 1$ and $\psi(t) = t \log t - t + 1$ we have $\bar{x}_{\phi} = A(a)$ and $\bar{x}_{\psi} = G(a)$. The condition of Theorem 2 is satisfied with K = 1, i.e, $\psi'(t) \ge \phi'(t)$. Hence $G(a) \le A(a)$.

Using now examples (2) with $z(t) = (t-1)^2$, where $\bar{x}_z = H(a)$ and (4). The condition of Theorem 2 is satisfied with K = 2, i.e, $z'(t) \ge 2\psi'(t)$. Hence $H(a) \le G(a)$. Thus,

 $H(a) \leq G(a) \leq A(a).$

Theorem 3

Let
$$\phi_1$$
, $\phi_2 \in \Phi$ and $\phi_\lambda(t) := \lambda \phi_1(t) + (1 - \lambda)\phi_2(t)$.
Then for all $0 \le \lambda \le 1$

$$\min\{\bar{x}_{\phi_1}(a),\bar{x}_{\phi_2}(a)\}\leq \bar{x}_{\phi_\lambda}(a)\leq \max\{\bar{x}_{\phi_1}(a),\bar{x}_{\phi_2}(a)\}.$$

Theorem 3 Proof

Proof

Note $0 \leq \lambda \leq 1$ and $\phi_{\lambda} \in \Phi$.

Now $\bar{x}_{\phi_{\lambda}}$ is obtained by solving the (OC): $\sum_{i=1}^{n} w_i \phi'_{\lambda}(\frac{\bar{x}_{\phi_{\lambda}}}{a_i}) = 0$. Then

$$\sum_{i=1}^{n} w_i \{ \lambda \phi'_1(\frac{\bar{x}_{\phi_\lambda}}{a_i}) + (1-\lambda)\phi'_2(\frac{\bar{x}_{\phi_\lambda}}{a_i}) \} = 0 \quad (1)$$

Assume $\bar{x}_{\phi_{\lambda}} < \min(\bar{x}_{\phi_1}, \bar{x}_{\phi_2})$ then since ϕ'_1, ϕ'_2 are strictly increasing we have with (1)

$$\lambda \sum_{i=1}^{n} w_i \phi_1'(\frac{\bar{x}_{\phi_1}}{a_i}) + (1-\lambda) \sum_{i=1}^{n} w_i \phi_2'(\frac{\bar{x}_{\phi_2}}{a_i}) > 0 \quad (2)$$

Theorem 3 Proof (Cont.)

But from the (OC) conditions we have that

$$\sum_{i=1}^{n} w_i \phi_1'(\frac{\bar{x}_{\phi_1}}{a_i}) = 0$$

and

$$\sum_{i=1}^{n} w_i \phi_2'(\frac{\bar{x}_{\phi_2}}{a_i}) = 0$$

Then (2) implies that 0 > 0.

Contradiction.

Similarly for $\bar{x}_{\phi_{\lambda}} > \max(\bar{x}_{\phi_{1}}, \bar{x}_{\phi_{2}}).$

Example

Let
$$\phi_1(t) = -\log t + t - 1$$
 and $\phi_2(t) = (t - 1)^2$. Then $\bar{x}_{\phi_1} = A(a)$
 $\bar{x}_{\phi_2} = H(a)$.

Consider for $\lambda = \frac{2}{3}$, $\phi_{\lambda}(t) := \lambda \phi_{1}(t) + (1 - \lambda)\phi_{2}(t)$ which is the function used in example 6 and so $\bar{x}_{\phi_{\lambda}} = \sqrt{A(a)H(a)}$.

Since $H(a) \leq A(a)$ then by Theorem 3

$$H(a) \leq \sqrt{A(a)H(a)} \leq A(a).$$

Let A be a nonnegative random variable (r.v.) with distribution F and suppA := [a, b], $0 \le a \le b \le +\infty$. A natural generalization of

$$\min\{\sum_{i=1}^n w_i a_i \phi(\frac{x}{a_i}) : x \in \mathbb{R}_+\} \ (E_{d_{\phi}})$$

is

$$\min\{E\left(A\phi(\frac{x}{A})\right) := \int_a^b t\phi(\frac{x}{t})dF(t) : x \in \mathbb{R}_+\},\$$

where $E(\cdot)$ denotes the mathematical expectation with respect to the r.v. A with distribution $F(\cdot)$.

Remark:

•
$$(E_{d_{\phi}})$$
 corresponds to the discrete r.v. A with $Pr\{A = a_i\} := w_i$

Theorem 4

Assume that all the expectations expressions exist and are finite. Similar to Theorem 1 we have the following result.

Then for any positive random variable A:

(i) There exist a unique \bar{x}_{ϕ} which solves $(E_{d_{\phi}})$ such that

 $\bar{x}_{\phi} \in \text{supp}A.$

(ii) If A is a degenerate r.v, i.e., A = C where C is a positive finite constant, $\bar{x}_{\phi} = C$.

(iii) For all $\lambda > 0$, $\bar{x}_{\phi}(\lambda A) = \lambda \bar{x}_{\phi}(A)$.

Examples

We can similarly derive the associated integral means by solving the optimality condition equation

$$\int_{a}^{b} \phi'(\frac{x}{t}) dF(t) = 0 \quad (OC)$$

For example, choosing ϕ as defined in Examples (1), (2), (4) and (5) one obtains respectively:

- (1) The Expectation $\bar{x}_{\phi} = E(A) = \int t dF(t)$.
- (2) The Harmonic Expectation $\bar{x}_{\phi} = \frac{1}{E(1/A)} = \frac{1}{\int \frac{dF(t)}{dF}}$.
- (3) The Geometric integral mean $\bar{x}_{\phi} = e^{E \log A} = e^{\int \log t dF(t)}$.
- (4) The Integral mean of order p: $\bar{x}_{\phi} = \{\int t^{p} dF(t)\}^{\frac{1}{p}}, p > 0.$

This example illustrates the derivation of an important "average" concept arising in statistics which is obtained by choosing a nondifferential kernel ϕ .

Example (θ th quantile)

$$\phi(\xi) = \left\{ egin{array}{cc} (1- heta)(\xi-1) & ext{if } \xi>1 \ heta(1-\xi) & ext{if } 0<\xi\leq 1 \end{array}
ight.$$

 $0 < \theta < 1.$

Remarks:

- ϕ is not differentiable at $\xi = 1$
- the subdifferential of ϕ is $\vartheta \phi(1) = [-\theta, 1-\theta]$, so $0 \in \vartheta \phi(1)$
- $d_{\phi}(\cdot, \cdot)$ satisfies Lemma 1 and Corollary 1

(Cont.)

The objective function of problem $(E_{d_{\phi}})$ is

Since $F(\cdot)$ is the distribution function of the positive random variable A then $\int_0^\infty dF(t) = 1$. Hence,

$$h(x) = xF(x) - \theta x - \int_0^x t dF(t) + \theta E(A).$$

It follows that $h'(\bar{x}_{\phi}) = 0$ is simply $F(\bar{x}_{\phi}) = \theta$.

Note: \bar{x}_{ϕ} is the θ th quantile of the continuous r.v. A. In particular, for $\theta = \frac{1}{2}$, \bar{x}_{ϕ} is the median. Consider the generalized mean of Hardy, Littlewood, and Polya (HLP)

$$M_{\psi}(a, w) = \psi^{-1}\{\sum_{i=1}^{n} w_i \psi(a_i)\},\$$

where ψ is strictly monotone function with inverse ψ^{-1} .

Note: This mean is not scale invariant.

Take for example the Logarithmic mean defined in two variables $a, b > 0, a \neq b$, by

$$L(a,b) := \left(\frac{\log b - \log a}{b - a}\right)^{-1} = \psi^{-1}\left(\frac{\int_a^b \psi(x) dx}{b - a}\right)$$

where $\psi(x) := \frac{1}{x}$.

Goal: Consider a new entropy-like distance function \Rightarrow derive the generalized mean of HLP.

Let $h: \mathbb{R}_+ \to \mathbb{R}$ be a strictly convex differentiable function and let $\alpha, \beta \in \mathbb{R}_+$. We define

$$D_h(\alpha,\beta) := h(\alpha) - h(\beta) - (\alpha - \beta)h'(\beta).$$

Since *h* is convex \Rightarrow gradient inequality holds for *h*(·). Then it follows that $D_h(\alpha, \beta) = 0$ if $\alpha = \beta$ and $D_h(\alpha, \beta) > 0$ if

 $\alpha \neq \beta$.

Remark:

 D_h(α, β) is not symmetric (except for h(t) quadratic), does not satisfy the triangle inequality and is not homogeneous (as d_φ(·, ·) was). **Problem:** Adapting the "distance " D_h as

$$D_h(x, a_i) := h(x) - h(a_i) - (x - a_i)h'(a_i)$$

problem (E_{D_h}) is now

$$\min\{\sum_{i=1}^{n} w_i D_h(x, a_i) : x \in \mathbb{R}_+\} (E_{D_h}).$$

Solution: By substituting $D_h(x, a_i)$ in the objective function of (E_{D_h}) we have to solve the convex minimization problem

$$\min\{h(x)-x\sum_{i=1}^n w_i h'(a_i): x \in \mathbb{R}_+\},\$$

since a_i are given numbers and $\sum_{i=1}^n w_i = 1$.

Then $\bar{x}_h := \bar{x}_h(a)$ solves (E_{D_h}) if and only if

$$h'(\bar{x}_h) = \sum_{i=1}^n w_i h'(a_i)$$
 (3)

 h' is strictly convex differentiable function ⇒ h' is continuous and strictly increasing in ℝ₊

By Theorem 82 [1, p.65] there is a unique \bar{x}_h solving (3) and

min
$$a_i \leq \bar{x}_h \leq \max a_i$$
.

Thus

$$\bar{x}_h(a) = (h')^{-1} \{ \sum w_i h'(a_i) \}.$$

^[1] G.H. Hardy, J.E Littlewood, and G. Polya, "Inequalities," 2nd edition, Cambridge Univ. Press, London, 1959.

Call $\psi := h'$. Then ψ is strictly monotone and

$$ar{x}_\psi({\sf a})=\psi^{-1}\{\sum {\sf w}_i\psi({\sf a}_i)\}$$
 (HLP)

Remarks:

- \bar{x}_{ψ} is not necessarily homogeneous (while \bar{x}_{ϕ} was)
- the only homogeneous means \bar{x}_{ψ} are the means \bar{x}_{p} obtained with $\psi(t) = t^{p}$ (see Theorem 84 [1, p.68])
- $\psi(t) = t^p$: special case of entropic means

^[1] G.H. Hardy, J.E Littlewood, and G. Polya, "Inequalities," 2nd edition, Cambridge Univ. Press, London, 1959

Generalization to the case of random variables can be obtained by solving

$$\min\{\int_{\alpha}^{\beta} D_h(x,t) dF(t) : x \in \mathbb{R}_+\},\$$

where

$$D_h(x,t) := h(x) - h(t) - (x-t)h'(t).$$

Equivalently,

$$\min\{h(x) - x \int_{\alpha}^{\beta} h'(t) dF(t) : x \in \mathbb{R}_+\}.$$

The solution is

$$\bar{x}_h(A) = (h')^{-1} \{ E[h'(A)] \}.$$

Note: supp $A = [\alpha, \beta]$

 $\mathsf{Call}\ \psi:=\mathit{h'}\ \mathsf{then}$

$$\bar{x}_{\psi}(A) = (\psi)^{-1} \{ E[\psi(A)] \} = \psi^{-1} \{ \int_{\alpha}^{\beta} \psi(t) dF(t) \}.$$

Example

Let A be a r.v. uniformly distributed to the interval [a, b], i.e, with density

$$f(t) = \left\{ egin{array}{cc} rac{1}{b-a} &, a \leq t \leq b \ 0 &, ext{else} \end{array}
ight.$$

Then

$$\bar{x}_{\psi}(A) = \bar{x}_{\psi}(a,b) = \psi^{-1}\{\int_{\alpha}^{\beta} \psi(t)dF(t) = \psi^{-1}\{\int_{a}^{b} \frac{\psi(t)}{b-a}dt\}.$$

Note: $dF(t) = f(t)dt = \frac{1}{b-a}dt$ when $a \le t \le b$.

Example (Cont.)

Choose now
$$\psi(t) = \frac{1}{t}$$
. Then $\int_a^b \frac{\psi(t)}{b-a} dt = \int_a^b \frac{1}{t(b-a)} dt = \frac{\ln(\frac{b}{a})}{b-a}$.
The solution will be

$$ar{x}_\psi(\mathsf{A}) = ar{x}_\psi(\mathsf{a}, \mathsf{b}) = \psi^{-1}\{\int_\mathsf{a}^\mathsf{b} rac{\psi(t)}{\mathsf{b}-\mathsf{a}}\mathsf{d}t\} = \mathsf{L}(\mathsf{a}, \mathsf{b}).$$

More generally, with $\psi(t) = t^{p-1}$, $(p \neq 1)$, the Stolarsky's power mean is recovered

$$\bar{x}_{\psi}(A) = S_{\rho}(a, b) = \{ \frac{b^{\rho} - a^{\rho}}{\rho(b-a)} \}^{\frac{1}{(\rho-1)}} ,$$

since $\int_{\alpha}^{\beta} \psi(t) dF(t) = \int_{a}^{b} \frac{t^{\rho-1}}{b-a} = \frac{b^{\rho} - a^{\rho}}{\rho(b-a)} \text{ and } \psi^{-1}(t) = t^{\frac{1}{(\rho-1)}} .$

In [2] Hoehn and Niven discovered that the mean of order p

$$x_p(a_1, a_2, ..., a_n) = \left(\sum_{i=1}^n w_i a_i^p\right)^{\frac{1}{p}}$$

has the asymptotic property

$$x_p(a_1 + \xi, a_2 + \xi, ..., a_n + \xi) - \xi \to \sum_{i=1}^n w_i a_i, \quad (4)$$

 $\xi \to +\infty.$

Remarks:

- (4) is proved for some specials values of p
- Extended to unweighted power means of all orders by [3] , and for non-homogeneous means by [4]
- Extension to a great variety of homogeneous means, including weighted means is given in [5]

[2] L. Hoehn and I. Niven, Averages on the move, Math. Mag. 58 (1985), 151-156

[3] J. L. Brenner, Limits of means for large values of the variables, Pi Mu Epsilon J. 8(1985), 160-163.

[4] R. P. Boas and J. L. Brenner, Asymptotic behavior of inhomogeneous means, J. Math. Anal. Appl. 123 (1987), 262-264.

[5] J. L. Brenner and B. C. Carlson, Homogeneous mean values: Weightsand asymptotics, J. Math. Anal. Appl. 123 (1987), 265-280. Next Theorem shows that the entropic means have the Hoehn-Niven property. This result is direct application of [5, Theorem 1].

Let $\phi \in \Phi$, $\phi \in C^3$ in the neighborhood of t = 1. If $a_1, a_2, ..., a_n$ are fixed and $\xi \to \infty$ then

$$x_{\phi}(a_1 + \xi, ..., a_n + \xi) = \xi + \sum_{i=1}^n w_i a_i + O(\frac{1}{\xi}).$$

^[5] J. L. Brenner and B. C. Carlson, Homogeneous mean values: Weightsand asymptotics, J. Math. Anal. Appl. 123 (1987), 265-280.

Theorem 3 Proof

Proof

By Theorem 1, $x_{\phi}(a)$ is a homogeneous mean satisfying $x_{\phi}(1) := x_{\phi}(1, 1, ..., 1) = 1.$

Next we can see that x_{ϕ} is a weighted mean in the sense of Brenner and Carlson [5] , i.e.,

$$rac{\partial x_{\phi}}{\partial a_{j}}(1,1,...,1) = w_{j} \;,\; j = 1,2,...,n.$$

^[5] J. L. Brenner and B. C. Carlson, Homogeneous mean values: Weightsand asymptotics, J. Math. Anal. Appl. 123 (1987), 265-280.

Theorem 3 Proof (Cont.)

Indeed the entropic mean $x_{\phi}(a)$ is the optimal solution of the problem

$$\min\{\sum_{i=1}^n w_i a_i \phi(\frac{x}{a_i}) : x \in \mathbb{R}_+\} \ (E_{d_{\phi}})$$

Thus it satisfies the optimality condition (OC)

$$\sum_{i=1}^{n} w_i \phi'(\frac{x}{a_i}) = 0.$$

Differentiating the identity with respect to a_i we obtain

$$\frac{\partial x_{\phi}(a)}{\partial a_{j}} \sum_{i=1}^{n} \frac{w_{i}}{a_{i}} \phi''\left(\frac{x_{\phi}(a)}{a_{i}}\right) = \frac{w_{j}}{a_{j}^{2}} \phi''\left(\frac{x_{\phi}(a)}{a_{j}}\right) x_{\phi}(a), \ j = 1, 2, ..., n.$$
(5)

Theorem 3 Proof (Cont.)

Setting $a_i = 1$ for all i = 1, 2, ..., n and using $x_{\phi}(1) = 1$, $\phi''(1) > 0$ and $\sum_{i=1}^{n} w_i = 1$, it follows from (5) that

$$\frac{\partial x_{\phi}}{\partial a_j}(1, 1, ..., 1) = w_j , \ j = 1, 2, ..., n.$$

Also, the differentiability assumption of ϕ implies that $x_{\phi}(\cdot)$ is twice continuously differentiable in the neighborhood of (1, 1, ..., 1).

Thus, invoking [5, Theorem 1], the asymptotic result

$$x_{\phi}(a_1 + \xi, ..., a_n + \xi) = \xi + \sum_{i=1}^{n} w_i a_i + O(\frac{1}{\xi})$$

follows.

^[5] J. L. Brenner and B. C. Carlson, Homogeneous mean values: Weightsand asymptotics, J. Math. Anal. Appl. 123 (1987), 265-280.

Summary

- Generate means as optimal solutions of minimization problem *E*, where the distance function is the Entropy-like function and the resulting mean is called Entropic mean.
- Entropic mean satisfies the basic properties of a general mean (see proof of Theorem 1).
- All classical means as well as many others are special cases of entropic means.
- Comparison Thm_s used to derive inequalities between various means.
- Derive entropic mean for random variables. Also, show how classical "measures of centrality" (Expectation, Quantiles, etc) are special cases of Entropic means.
- Use new entropy-like function to derive the generalized mean of HLP.
- Entopic means are weighted homogeneous means and have an interesting asymptotic property.

QUESTIONS?