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Introduction

The traditional k-means clustering algorithm is

exhaustive (every point is put into a cluster), and

non-overlapping (no point belongs to more than one cluster).

There are many applications in which

there are outliers (points do not belong to any cluster) and / or

some points belong to multiple clusters.

Application examples:

Outlier detection in datasets.

Popular EachMovie dataset: some movies belong to multiple
genres.

Biology: clustering genes by function results in overlapping
clusters.
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Introduction

Many papers on clustering consider either cluster outliers, or
overlapping clusters, but not both.

This paper is one of the first to consider both cluster outliers
and overlapping clusters in a unified manner.

One popular application is community detection (e.g.,
detecting clusters or communities of users in social networks.)

In this paper, the objective functional for traditional clustering
is modified to produce the NEO-K-Means objective functional.
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Introduction

A NEO-K-Means Algorithm is proposed to minimize the
NEO-K-Means objective functional.

NEO-K-Means is also used to solve graph clustering problems.

NEO-K-Means is tested experimentally on both vector and
graph data
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Traditional k-means

X := {x1, x2, . . . , xn} is a set of data points.

We want to partition X into k clusters C1, C2, . . . , Ck , i.e.,
∪jCj = X and i 6= j =⇒ Ci ∩ Cj = ∅.
The goal of k-means is to pick the clusters to minimize the
sum of the distances of the clusters from the cluster centroids,
i.e., solve the minimization problem

min
{Cj}kj=1

k∑
j=1

∑
xi∈Cj

‖xi −mj‖2, where mj :=

∑
xi∈Cj xi

|Cj |

This is an NP-hard problem.

However, the traditional k-means algorithm monotonically
decreases the objective functional.
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k-means Extension

Define the assignment matrix U = (uij) ∈ Rn×k such that

uij =

{
1 if xi ∈ Cj
0 otherwise.

In the case of traditional disjoint exhaustive clustering, each
column of U contains exactly one entry of 1; all other entries
are zeros. Hence the trace of UTU is equal to the number of
cluster assignments, n.

To control the number of cluster assignments, we introduce
the constraint that the trace of UTU is equal to n(1 + α),
where 0 ≤ α ≤ (k − 1).
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k-means Extension

First extend the k-means objective as follows to minimize over
assignment matrices U:

min
U

k∑
j=1

n∑
i=1

uij‖xi −mj‖2, where mj =

∑n
i=1 uijxi∑n
i=1 uij

.

s.t. trace(UTU) = (1 + α)n

Take α << (k − 1) to avoid assigning each point as its own
cluster.

New objective functional allows for both outliers and
overlapping clusters.
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Testing k-means extension

Tested first extension of the k-means objectve on synthetic
data set:

Two over-lapping clusters of ordered pairs, with several
additional points as outliers.

Each cluster generated from a Gaussian distribution.

Algorithm similar to k-means is used.

α is set to 0.1, the ground-truth value of α.
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Testing k-means extension

First extension of k-means fails to recover ground-truth
clusters.

Too many points are labeled as outliers.
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NEO-K-Means Objective

Necessary to control the degree of non-exhaustiveness.

Let I denote the indicator function:

I(expression) =

{
1 if the expression is true

0 otherwise.

Let 1 ∈ Rk denote the vector of all ones.

Note that (U1)i denotes the number of clusters to which xi
belongs.

We update the objective functional by adding a
non-exhaustiveness constraint.

Teresa Lebair UMBC 11/38



NEO-K-Means Objective

The NEO-K-Means Objective is defined as follows:

min
U

k∑
j=1

n∑
i=1

uij‖xi −mj‖2, where mj =

∑n
i=1 uijxi∑n
i=1 uij

.

s.t. trace(UTU) = (1 + α)n,
n∑

i=1

I ((U1)i = 0) ≤ βn

0 ≤ β << 1 controls the amount of points can be labeled as
outliers.

The choice of α = β = 0 recovers the traditional k-means
objective.
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Testing NEO-K-Means Objective

Tested the NEO-K-Means Objective using the previous
synthetic data set.

Outcome is much better than that of the previous k-means
extension.
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NEO-K-Means Algorithm

At most βn data points have no cluster membership =⇒ at
least n − βn data points belong to a cluster.

Sketch of NEO-K-Means Algorithm

Initialize cluster centroids (use any traditional k-means
initialization strategy.)

Compute dij , the distance between each point xi and each
cluster Cj , for all i = 1, . . . , n and j = 1, . . . , k.

Sort data points in ascending order by distance to closest
cluster.

Assign the first n − βn data points in the sorted list to their
closest clusters. Let C̄j denote the assignments made by this
step.
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NEO-K-Means Algorithm

Sketch of NEO-K-Means Algorithm (Continued)

Note that
∑k

j=1 |C̄j | = n − βn.

Make an additional αn + βn assignments based off of the
αn + βn smallest entries of D = (dij) not already associated

with assignments to C̄j ’s. Let Ĉj denote the assignments made
by this step.

Each cluster Cj is then updated to be Cj := C̄j ∪ Ĉj .

Repeat process until objective function is sufficiently small, or
the maximum number of iterations is reached.
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NEO-K-Means Algorithm
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NEO-K-Means Algorithm

Theorem

The NEO-K-Means objective functional monotonically decreases through the
application of the NEO-K-Means Algorithm while satisfying the constraints for fixed α
and β.

Proof.

Let J(t) denote the objective at the t-th iterations. Then

J(t) =
k∑

j=1

∑
xi∈C(t)

j

‖xi −m
(t)
j ‖

2 ≥
k∑

j=1

∑
xi∈C̄(t+1)

j

‖xi −m
(t)
j ‖

2 +
k∑

j=1

∑
xi∈Ĉ(t+1)

j

‖xi −m
(t)
j ‖

2

=
k∑

j=1

∑
xi∈C(t+1)

j

‖xi −m
(t)
j ‖

2 ≥
k∑

j=1

∑
xi∈C(t+1)

j

‖xi −m
(t+1)
j ‖2 = J(t+1).
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NEO-K-Means Algorithm: Choosing α and β

Choosing β:

Run traditional k-means. Let di be the distance between a
data point xi and its closest cluster.

Compute the mean µ and standard deviation σ for these set of
distances.

Consider di and outlier if di /∈ [µ− δσ, µ+ δσ] for some fixed
δ > 0. (δ = 6 usually leads to reasonable β.)

Set β equal to the proportion of di ’s that are outliers.

Choosing α:

Two different strategies can be used to choose α.
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NEO-K-Means Algorithm: Choosing α

First strategy for choosing α (for small overlap):

For each cluster Cj , consider the distances between each
xi ∈ Cj and Cj . Compute the mean µj and standard deviation
σj of the distances.

For each x` /∈ Cj , compute the distance between x` and Cj . If
d`j is less than µj + δσj , consider xj to be in the overlapped
region.

Count the points in overlapped regions to estimate α.
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NEO-K-Means Algorithm: Choosing α

Second strategy for choosing α (for large overlap):

Let dij denote the distance between the point xi and the
cluster Cj .

Compute the normalized distance between each point xi and
cluster Cj : d̄ij :=

dij∑k
`=1 di`

Count the number of d̄ij ’s whose value is less than 1
k+1 . Divide

by n to obtain α.

Note that if a point xi is equidistant from all clusters C`, we
have d̄i` = 1

k for all `. Using a threshold of 1
k+1 gives us a

stronger bound.
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Weighted Kernel K-Means

In kernel k-means, each point is mapped into a higher
dimensional feature space via the mapping φ.

Additionally, weights ωi ≥ 0 can be introduced to differentiate
each point’s contribution to the objective functional.

The weighted kernel k-means objective functional is

min
{Cj}kj=1

k∑
j=1

∑
xi∈Cj

ωi‖φ(xi )−mj‖2, where mj =

∑
xi∈Cj ωiφ(xi )∑

xi∈Cj ωi
.
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Weighted Kernel NEO-K-Means

Can define an analogous weighted kernel NEO-K-Means
objective functional:

min
U

k∑
c=1

n∑
i=1

uicωi‖φ(xi )−mc‖2, where mc =

∑n
i=1 uicωiφ(xi )∑n

i=1 uicωi
.

s.t. trace(UTU) = (1 + α)n,
n∑

i=1

I ((U1)i = 0) ≤ βn

This NEO-K-Means extension allows us to consider
non-exhaustive overlapping graph clustering / overlapping
community detection.
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Graph Clustering Using NEO-K-Means

A graph G = (V, E) is a collection of vertices and edges.

We can define an adjacency matrix A = (aij), such that aij is
equal to the weight of the edge between vertices i and j .

Example:

Alice Bob

PaulLinda

Eve
8

4

2 1
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Graph Clustering Using NEO-K-Means

Alice Bob

PaulLinda

Eve
8

4

2 1

The adjacency matrix is

A =



A B L P E

A 0 8 2 0 0
B 8 0 0 1 0
L 2 0 0 4 0
P 0 1 4 0 0
E 0 0 0 0 0

.
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Graph Clustering Using NEO-K-Means

We assume that there are no connections between any vertex
i and itself =⇒ aii = 0 for all i = 1, . . . , n.

Also assume that graph is unidirected (so A is symmetric).

Traditional graph partitioning problem groups vertices into k
pairwise disjoint clusters C1 ∪ . . . Ck = V.

Define the ‘links’ function between two clusters as the sum of
the edge weights between the clusters:
links(Cj , C`) :=

∑
xi1∈Cj

∑
xi2∈C`

ai1i2

Example: If C1 := {Alice, Bob} and C2 = { Linda, Paul}, then
links(C1, C2) = aAL + aBL + aAP + aBP = 2 + 0 + 0 + 1 = 3.
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Graph Clustering Using NEO-K-Means

The cut (popular measure of evaluating graph partitioning) of
a graph G is defined as

Cut(G ) =
k∑

j=1

links(Cj ,V \ Cj)
links(Cj ,V)

.

The normalized cut of a graph partition is the partition of V
that minimizes Cut(G ) over all possible partitions, i.e.

NCut(G ) = min
C1,...,Ck

Cut(G ).

Let D be the diagonal matrix such that dii =
∑n

j=1 aij , i.e.,
the matrix of vertex degrees.
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Graph Clustering Using NEO-K-Means

We can rewrite NCut(G ) = minC1,...,Ck
∑k

j=1
links(Cj ,V\Cj )

links(Cj ,V) as

NCut(G ) = min
y1,...,yk

k∑
j=1

yTj (D − A)yj

yTj Dyj
= max

y1,...,yk

k∑
j=1

yTj Ayj

yTj Dyj
,

where yj denotes the indicator vector for the cluster Cj , i.e.,
yj(i) = 1 if vi ∈ Cj , and zero otherwise.

This traditional normalized cut objective is for disjoint,
exhaustive graph clustering.
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Graph Clustering Using NEO-K-Means

For NEO-K-Means graph clustering, consider the
maximization problem

max
Y

k∑
j=1

yTj Ayj

yTj Dyj

s.t. trace(Y TY ) = (1 + α)n,
n∑

i=1

I ((Y 1)i = 0) ≤ βn,

where Y is an assignment matrix, with the jth column of Y
given by yj .

Just as with the vector data, we may adjust α and β to
control the degree of non-exhaustiveness.

This optimization problem for graph partitioning can be
reformulated as weighted kernel NEO-K-Means problem.
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Graph Clustering Using NEO-K-Means

Let W ∈ Rn×n be the diagonal matrix such that wii is equal
to the vertex degree/weight for each i = 1, . . . , n.

Let K be a kernel matrix given by Kij = φ(xi )φ(xj).

Finally, let uc be the column of the assignment matrix U.

The weighted kernel NEO-K-Means objective can be rewritten
as

min
U

k∑
c=1

n∑
i=1

uicωi‖φ(xi )−mc‖2 =

min
U

k∑
c=1

(
n∑

i=1

uicωiKii −
uTc WKWuc
uTc Wuc

)
.
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Graph Clustering Using NEO-K-Means

Define the kernel as K = γW−1 + W−1AW−1, where γ > 0
is chosen so that K is positive definite.

Then

min
U

k∑
c=1

(
n∑

i=1

uicωiKii −
uTc Auc
uTc Wuc

)

= min
U

(
γ(1 + α)n −

k∑
c=1

uTc Auc
uTc Wuc

)

= max
U

k∑
c=1

uTc Auc
uTc Wuc

.

Letting W = D and noting that U = Y demonstrates that
the extended normalized cut objective can be formulated as a
weighted kernel NEO-K-Means objective.
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Graph Clustering Using NEO-K-Means

Authors use the following distance function between a vertex
vi and a cluster Cj :

dist(vi , Cj) = −
2links(vi , Cj)

deg(vi )deg(Cj)
+

links(Cj , Cj)
deg(Cj)2

+
γ

deg(vi )
− γ

deg(Cj)

deg(vi ) denotes the degree of the vertex vi , and deg(Cj)
denotes the sum of the edge weights connecting vertices in Cj .

The NEO-K-Means Algorithm can then be applied to the
graph data using this distance function.

Teresa Lebair UMBC 31/38



Experimental Metrics

To measure the effectiveness of the NEO-K-Means algorithm,
we use the average F1 score:

Define F1 score of the the ground-truth cluster Si as

F1(Si ) =
2rSi pSi
rSi +pSi

, where pSi =
|Cj∗∩Si |
|Cj∗ |

, rSi =
|Cj∗∩Si |
|Si | and j∗

corresponds to the cluster Cj∗ which makes F1(Si ) as large as
possible out of all the clusters.

The average F1 score is then

F̄1 =
1

|S|
∑
Si∈S

F1(Si ),

where S is the set of ground-truth clusters.

Higher F̄1 ∈ [0, 1] score indicates better clustering.
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Experimental Results

Tested NEO-K-Means Algorithm on several vector data sets.
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Experimental Results

Compared effectiveness of NEO-K-Means to that of several
other algorithms.

NEO-K-Means consistently outperforms the other algorithms
for this data set.
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Experimental Results

Additionally test NEO-K-Means with large graph data sets:

Compare the average normalized cut of each algorithm when
applied to large real-world datasets.
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Experimental Results

Also consider (i) average F1 score of different algorithms, and
(ii) average normalized cut and F1 NEO-K-Means for different
α’s and β’s.
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Conclusions and Future Work

NEO-K-Means simultaneously considers non-exhaustive and
overlapping clusters.

New method outperforms state-of-the-art methods in terms of
finding ground truth clusters.

Conclude that NEO-K-Means is a useful algorithm.

Plan to extend this type of clustering to other types of
Bregman divergences.
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