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Introduction

@ The traditional k-means clustering algorithm is

e exhaustive (every point is put into a cluster), and

e non-overlapping (no point belongs to more than one cluster).
@ There are many applications in which

o there are outliers (points do not belong to any cluster) and / or
e some points belong to multiple clusters.

@ Application examples:

o Outlier detection in datasets.

o Popular EachMovie dataset: some movies belong to multiple
genres.

e Biology: clustering genes by function results in overlapping
clusters.
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Introduction

@ Many papers on clustering consider either cluster outliers, or
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overlapping clusters, but not both.

This paper is one of the first to consider both cluster outliers
and overlapping clusters in a unified manner.

One popular application is community detection (e.g.,
detecting clusters or communities of users in social networks.)

In this paper, the objective functional for traditional clustering
is modified to produce the NEO-K-Means objective functional.
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Introduction

@ A NEO-K-Means Algorithm is proposed to minimize the
NEO-K-Means objective functional.

@ NEO-K-Means is also used to solve graph clustering problems.

@ NEO-K-Means is tested experimentally on both vector and
graph data
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Traditional k-means

e X :={x1,x2,...,Xp} is a set of data points.

o We want to partition X into k clusters C1,Ca,...,Cy, i.e.,
UiCj =X and i # j — C,-ij:(Z).

@ The goal of k-means is to pick the clusters to minimize the
sum of the distances of the clusters from the cluster centroids,
i.e., solve the minimization problem

ZX,‘ECJ‘ Xi
mm Z Z |x; — mj||?, where m; :=
€l

J 1 j=1 x;€C;

@ This is an NP-hard problem.

@ However, the traditional k-means algorithm monotonically
decreases the objective functional.
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k-means Extension

o Define the assignment matrix U = (u;;) € R™ such that

{1 if x; € C;
uj =

0 otherwise.

@ In the case of traditional disjoint exhaustive clustering, each
column of U contains exactly one entry of 1; all other entries
are zeros. Hence the trace of U U is equal to the number of
cluster assignments, n.

@ To control the number of cluster assignments, we introduce

the constraint that the trace of U U is equal to n(1 + a),
where 0 < a < (k —1).
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k-means Extension

o First extend the k-means objective as follows to minimize over
assignment matrices U:

¢ S i
min ZZ uijl[xi — ijz, where m; = il W
v 4 Yo uj
s.t. trace(UTU) = (14 a)n
o Take v << (k — 1) to avoid assigning each point as its own
cluster.

@ New objective functional allows for both outliers and
overlapping clusters.
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Testing k-means extension

@ Tested first extension of the k-means objectve on synthetic
data set:

e Two over-lapping clusters of ordered pairs, with several
additional points as outliers.

e Each cluster generated from a Gaussian distribution.

@ Algorithm similar to k-means is used.

@ « is set to 0.1, the ground-truth value of «.
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Testing k-means extension

@ First extension of k-means fails to recover ground-truth

clusters.

@ Too many points are labeled as outliers.
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{a) Ground-truth clusters

(b} First extension of k-means
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NEO-K-Means Objective

Necessary to control the degree of non-exhaustiveness.
@ Let I denote the indicator function:

1 if the expression is true

0 otherwise.

I(expression) = {

Let 1 € R* denote the vector of all ones.

o Note that (U1); denotes the number of clusters to which x;
belongs.

We update the objective functional by adding a
non-exhaustiveness constraint.
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NEO-K-Means Objective

@ The NEO-K-Means Objective is defined as follows:

m|n ZZ uijl|xi — mj||%, where m; = Z'nl UijXi

j=1i=1 ZIIUU

s.t. trace(UTU) = (1 + a)n, i}l((Ul); =0) < fn

@ 0 < 8 << 1 controls the amount of points can be labeled as
outliers.

@ The choice of & = 8 = 0 recovers the traditional k-means
objective.
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Testing NEO-K-Means Objective

@ Tested the NEO-K-Means Objective using the previous
synthetic data set.

@ Outcome is much better than that of the previous k-means
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NEO-K-Means Algorithm

@ At most Sn data points have no cluster membership — at
least n — Sn data points belong to a cluster.

@ Sketch of NEO-K-Means Algorithm
o Initialize cluster centroids (use any traditional k-means

initialization strategy.)

o Compute djj, the distance between each point x; and each
cluster Cj, forall i=1,...,nand j=1,... k.

e Sort data points in ascending order by distance to closest
cluster.

e Assign the first n — Bn data points in the sorted list to their
closest clusters. Let C; denote the assignments made by this
step.
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NEO-K-Means Algorithm

@ Sketch of NEO-K-Means Algorithm (Continued)
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Note that ZJ’-;I ICj| = n— Bn.

Make an additional an 4+ Bn assignments based off of the

an + Bn smallest entries of D = (dj;) not already associated
with assignments to (fjs Let q denote the assignments made
by this step.

Each cluster C; is then updated to be C; := C; UC;.

Repeat process until objective function is sufficiently small, or
the maximum number of iterations is reached.

UMBC 15/38



NEO-K-Means Algorithm

Algorithm 1 NEO-K-Means
Input: X = {x1,x, Xy}, the number of clusters k, the
maximum number of iterations ¢4z, o, 8
Output: C1,Cs,--- ,Ck
1: Initialize cluster means {m;}§_,, ¢t =0.
2: while not converged and ¢t < tmar do
3:  Compute cluster means, and then compute distances
between every data point and clusters [d:;]qu.

4: Initialize T=0,85=0,p=0,and C; =0, C; =0 Vj.

5. while p < (n+ an) do

6: if p < (n — fn) then

T Assign x;~ to C;» such that (i*,5*) = argmin di;
where {(¢,7)} ¢ T,1 ¢ S. B

8: S=8U{i"}.

9: else

10: Assign xi+ to C;+ such that (i%,5") = argmin di;
where {(i,)} & 7.

11: end if

12: T=TuU{(E, ")}

13: p=p+1

14:  end while

15 V9§, update clusters C; = C; UC,.
16: t=1t+1

17: end while
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NEO-K-Means Algorithm

Theorem

The NEO-K-Means objective functional monotonically decreases through the
application of the NEO-K-Means Algorithm while satisfying the constraints for fixed o
and f.

Proof

| \

Let J® denote the objective at the t-th iterations. Then

Z Z llxi — m{* H2>Z > Hx—m‘>||2+2 ST ki —m|?

X €C] () Xi ec( ) =1y ec““)
k k )
25 t+1)),2 1
=3 3 Ix-mPE=30 3 k- m{Y)2 = e,
Jj=1 x,EC(tH) Jj=1 xi Ec(t+l)
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NEO-K-Means Algorithm: Choosing « and f

@ Choosing :

e Run traditional k-means. Let d; be the distance between a
data point x; and its closest cluster.

e Compute the mean p and standard deviation o for these set of
distances.

o Consider d; and outlier if d; ¢ [ — do, u + do] for some fixed
d > 0. (6 = 6 usually leads to reasonable 3.)

e Set 3 equal to the proportion of d;'s that are outliers.

@ Choosing o

o Two different strategies can be used to choose a.
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NEO-K-Means Algorithm: Choosing «

e First strategy for choosing « (for small overlap):

o For each cluster C;, consider the distances between each
x; € C; and C;. Compute the mean p; and standard deviation
o; of the distances.

o For each x; ¢ C;, compute the distance between x; and C;. If
dyj is less than pj + do;, consider x; to be in the overlapped
region.

e Count the points in overlapped regions to estimate a.

Teresa Lebair UMBC 19/38



NEO-K-Means Algorithm: Choosing «

@ Second strategy for choosing « (for large overlap):

Teresa Lebair

Let dj; denote the distance between the point x; and the
cluster C;.

Compute the normalized distance between each point x; and

T - i
cluster C;: dj; : ST dn

Count the number of dj;'s whose value is less than %ﬂ Divide
by n to obtain a.

Note that if a point x; is equidistant from all clusters Cy, we
have d =  for all £. Using a threshold of 2 gives us a
stronger bound.
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Weighted Kernel K-Means

@ In kernel k-means, each point is mapped into a higher
dimensional feature space via the mapping ¢.

o Additionally, weights w; > 0 can be introduced to differentiate
each point's contribution to the objective functional.

@ The weighted kernel k-means objective functional is

Y osec, Wid(xi)
m|n Z Z will¢(xi) — mj|?, where m; = £oael T
ZX,-GCJ- Wi

}k
JJ 1 j=1 x;€C;

Teresa Lebair UMBC 21/38



Weighted Kernel NEO-K-Means

@ Can define an analogous weighted kernel NEO-K-Means
objective functional:

k n n . )
min 323 ewi6() — mel%. where m, = 223 Wi 0lx),

=1 i=1 D Uiewi
s.t. trace(UTU) = (1 +a) Z]I ((U1); =0) < Bn
@ This NEO-K-Means extension allows us to consider

non-exhaustive overlapping graph clustering / overlapping
community detection.
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Graph Clustering Using NEO-K-Means

e A graph G = (V,&) is a collection of vertices and edges.

@ We can define an adjacency matrix A = (aj;), such that aj; is
equal to the weight of the edge between vertices / and j.

e Example:
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Graph Clustering Using NEO-K-Means

The adjacency matrix is

>

1
muvHE >
coN®©wOo >
o oo W
oroOoON I~
co A~ O T
cocoooo m
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Graph Clustering Using NEO-K-Means
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We assume that there are no connections between any vertex
i and itself = a;=0foralli=1,...,n

Also assume that graph is unidirected (so A is symmetric).

Traditional graph partitioning problem groups vertices into k
pairwise disjoint clusters C; U ...Cx = V.

Define the ‘links’ function between two clusters as the sum of
the edge weights between the clusters:

|inkS(Cj, C@) = inl Ecj leé €Cy ailiz

Example: If C; := {Alice, Bob} and C, = { Linda, Paul}, then
links(C1,C2) = aar + agL +aap +agp=2+0+0+1=3.
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Graph Clustering Using NEO-K-Means

@ The cut (popular measure of evaluating graph partitioning) of
a graph G is defined as

k

K links(C, Y\ €))
Cut(G) = Z ~links(C;,V)

@ The normalized cut of a graph partition is the partition of V
that minimizes Cut(G) over all possible partitions, i.e.

NCut(G) = Clnli.an Cut(G).

n

@ Let D be the diagonal matrix such that dj; = Zjﬂ aj, l.e.,
the matrix of vertex degrees.
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Graph Clustering Using NEO-K-Means

. . links(C;,V\C;
e We can rewrite NCut(G) = ming, .. ¢, Zjlle % as
J

k T
v i Ayj
NCut(G) = min 4 - = ,
Y1y ,ykz i ,ykz; TDyJ

where y; denotes the indicator vector for the cluster Cj, i.e.,
yj(i) = 1if v; € Cj, and zero otherwise.

@ This traditional normalized cut objective is for disjoint,
exhaustive graph clustering.
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Graph Clustering Using NEO-K-Means

@ For NEO-K-Means graph clustering, consider the
maximization problem

n
st trace(YTY) = (1+a)n, > I((Y1);=0) < Bn,
i=1
where Y is an assignment matrix, with the jth column of Y
given by y;.
@ Just as with the vector data, we may adjust a and S to
control the degree of non-exhaustiveness.

@ This optimization problem for graph partitioning can be
reformulated as weighted kernel NEO-K-Means problem.
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Graph Clustering Using NEO-K-Means

o Let W € R™" be the diagonal matrix such that w; is equal
to the vertex degree/weight for each i =1,... n.

o Let K be a kernel matrix given by Kjj = ¢(x;i)o(x;).
e Finally, let uc be the column of the assignment matrix U.

@ The weighted kernel NEO-K-Means objective can be rewritten
as

k n
min >3 viewill9(x) — me? =

c=1j=1

k n T
u: WKWu
; w0 K — =€ S
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Graph Clustering Using NEO-K-Means

o Define the kernel as K = yW = + WLAW !, where vy > 0
is chosen so that K is positive definite.
@ Then

k
Y (Y w2
min UicwiAjj —
U . [[oaad BRI} U;,—WUC
c=1 \ij=1

= min (1+oz)n—zk: tg Aue
AR ul Wu,

c=1

k
ul Auc

c=

o Letting W = D and noting that U = Y demonstrates that
the extended normalized cut objective can be formulated as a
weighted kernel NEO-K-Means objective.

Teresa Lebair UMBC

30/38



Graph Clustering Using NEO-K-Means

@ Authors use the following distance function between a vertex
vi and a cluster C;:

2links(v;,C;)  links(C;,Cj) v ~

dist(v,',Cj) = _deg(v,-)deg(Cj) deg(Cj)2 deg(v;) _deg(Cj)

@ deg(v;) denotes the degree of the vertex v;, and deg(C;)
denotes the sum of the edge weights connecting vertices in C;.

@ The NEO-K-Means Algorithm can then be applied to the
graph data using this distance function.
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Experimental Metrics

@ To measure the effectiveness of the NEO-K-Means algorithm,
we use the average F; score:

e Define F; score of the the ground-truth cluster S; as
N 2l’sl.psi _ |C-*ﬁ8,-\ _ |C-*ﬁ$," o
Fi(Si) = s, ps where ps, = e s = s and j
corresponds to the cluster Cj- which makes Fi(S;) as large as

possible out of all the clusters.

o The average F; score is then

-1
F= S > RS,
S;eS

where S is the set of ground-truth clusters.

o Higher F; € [0, 1] score indicates better clustering.
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Experimental Results

o Tested NEO-K-Means Algorithm on several vector data sets.

Table 1: Vector datasets.

n dim. IC| outliers k&

synthl 5,000 2 2,750 0 2
synth2 1,000 2 550 5 2
synth3 6,000 2 3,600 6 2
yeast 2417 103 7315 0 14
music 593 72 184.7 0 6
scene 2,407 294 430.8 0 6
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Experimental Results

o Compared effectiveness of NEO-K-Means to that of several
other algorithms.

Table 2: Fy scores on vector datasets. NEO-K-Means (the last column) achieves the highest I score across all
the datasets while the performance of other existing algorithms is not consistent across all the datasets.

moc Suzzy esp sp okm rokm NEO
synthl 0.833 0.959 0.977 0.985 0.989 0.969 0.996
synth2 0.836 0.957 0.952 0.973 0.967 0.975 0.996
synth3 0.547 0.919 0.968 0.952 0.970 0.928 0.996
yeast - 0.308 0.289 0.203 0.311 0.203 0.366
music 0.534 0.533 0.527 0.508 0.527 0.454 0.550
scene 0.467 0.431 0.572 0.586 0.571 0.593 0.626

o NEO-K-Means consistently outperforms the other algorithms
for this data set.
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Experimental Results

o Additionally test NEO-K-Means with large graph data sets:

Table 4: Graph datasets
No. of vertices No. of edges

Amazon 334,863 925,872
DBLP 317,080 1,049,866
Flickr 1,994,422 21,445,057
LiveJournal 1,757,326 42,183,338

@ Compare the average normalized cut of each algorithm when
applied to large real-world datasets.

Table 3: Average normalized cut of each algorithm on large real-world networks. Lower normalized cut indicates
better clustering. NEO-K-Means achieves the lowest normalized cut on all the datasets.

demon oslom bigelam sse NEO
Amazon 0.555 0.221 0.392 0.116 0.105
DBLP 0.606 0.355 0.617 0.204 0.188
Flickr - - 0.596 0.515 0.331
LiveJournal - - 0.912 0.643 0.373
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Experimental Results

@ Also consider (i) average F; score of different algorithms, and
(ii) average normalized cut and F; NEO-K-Means for different
a's and ('s.

Table 5: F1 score of each algorithm on Amazon and DBLP. NEO-K-Means shows the highest Fi score on Amazon,
and comparable F; score with sse on DBLP.

demon oslom bigclam sse NEO
Amazon 0.165 0.318 0.269 0.467 0.490
DBLP 0.137 0.132 0.151 0.176 0.174

Table 6: Average normalized cut and F) score of NEO-K-Means with different o and 8 on Amazon dataset.
a=30, /=0 a=35, f=0 =45 =0 a=30, 5=0.0001 «=35, §=0.0001 «a=45, 5=0.0001
neut 0.107 0.104 0.104 0.106 0.104 0.104
F 0.488 0.490 0.490 0.488 0.490 0.490
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Conclusions and Future Work

@ NEO-K-Means simultaneously considers non-exhaustive and
overlapping clusters.

@ New method outperforms state-of-the-art methods in terms of
finding ground truth clusters.

@ Conclude that NEO-K-Means is a useful algorithm.

@ Plan to extend this type of clustering to other types of
Bregman divergences.
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