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Bregman Divergence

Definition
Examples
Properties

Bregman Divergence Definition

Bregman, 1967; Censor and Zenios, 1998 J

Definition (Bregman Divergence)

Let #: S +— R, S = dom(®) be a strictly convex function defined
on a convex set S C R? such that ® is differentiable on ri(S),
assumed to be nonempty. The Bregman divergence

de : S x ri(S) — [0, 00) is defined as:

do(x,y) = ®(x) = ®(y) = (x —y, VO(y))
.where V®(y) represents the gradient vector of ® evaluated at y.
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Bregman Divergence
Definition
Examples
Properties

Euclidean distance

®(x) = (x, x) strictly convex and differenable on R =

2
do(x,y) = (x,x) = (y,¥) = (x =y, 2y) = [Ix =yl
do(x,y) > 0 as long as ® convex
(http://mark.reid.name/blog/meet-the-bregman-divergences.html)

\ [ Dama=ta—yl?
Y

hiz)
f Legendre function:

- closed, i.e. {z: f(z) £ a} is closed
- proper, (f > —oc)
- strictly convex
- essentially smooth
< differentiable
o |V F(x¢)|| — oo when x; — bd(domf)

] T —
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Bregman Divergence

Definition
Examples
Properties

Experiments about underlying distributions

+ Binomial

Distribution

Generative Model  dgaussian dpoisson dBinomial
Gaussian 0.675+0.032 0.659+0.036 0.668+0.035
Poisson 0.69140.036 0.7244+0.036 0.716+0.036
Binomial 0.7774+0.038 0.799+0.0345 0.798+0.034

Each of 3 types’ mixed density generated 300 points, were clustered 100 trials. Compared to ground-truth with NMI.

NMI is estimated based on “Evaluation of Clustering” (http://nlp.stanford.edu/IR-book/html|/htmledition/evaluation-of-clu
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Bregman Divergence
Definition
Examples
Properties

KL-divergence

Zj'fl:l pj = 1, neg-entropy ®(p) = 27:1 pjlogapj convex

d d
do(p,q) =Y _ pjlogap; — Y _ qjlogaq; — (p— 4, V(q))

J=1 J=1
= pilogpj — Y _ gjlogaq; — Y (pj — qj) (logz q; + logy )

:ij log, <Zj> — (logy e) - Z(pj - qj)

—_——
=0

=KL (pl|q)

for f(p):p|0g2pl OSPS 1, %:|0g2p+|0g2e,
jipé = %Iog2 e > 0= f(p) convex in [0, 1], thus }_ f(p;) convex in
0<p <1
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Bregman Divergence
Definition

Examples
Properties

[takura-Saito distance

If F (&%) is the power spectrum of a signal f(t) , then the

functional ®(F) = —5= [™ log (F (¢/)) df is convex in F and

corresponds to the neg-entropy rate of the signal assuming it was
generated by a stationary Gaussian process.

=g, [ [ () rn (e

(£ (#) - () ()
Fie 1) as
)

- [ (s (&) + e
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Bregman Divergence

Definition
Examples
Properties

Bregman divergences generated from

Domain d(x) do(x,y) Divergence
R x? (x—y)? Squared loss
R? [Ix]2 IIx = yl|? Squared Euclidean distance
R? xT Ax (x=y)TA(x—y) Mahalanobis distance
Ry x log x xlogif(x—y)
d-Simplex 27:1 xj logy X; 27:1 xjlog, % —logy e x 27:1 (X =) KL-divergence
R4 Zle xj log x; 27:1 X Iog% —log. e x 27:1 (x5 — ) Generalized I-divergence
[01]  xlogx+ (1— x)log(1l—x) xlog % + (1 - x)log {=% Logistic Loss
Ryt —log x § —logy -1 Itakura-Satio distance
R e* e —e —(x—y)e¥

‘ Function Name () dom o D (=)
Squared norm 322 (—o0,+09) F@-w?
Shannen entropy zlogz—= [0.400)
Bit entropy zlog x+(1—x) log(1—x) [0.1 = log Z4(1-x) log 1=
Burg entropy — logz (0,+00) log Z—1
Hellinger Vi—a? [—1.1] —zy)(1-y?)~ /21 —a?)1/2
£, quasi-norm — 2P (0<p=<1) [0,+00) — aP4pzy?l—(p—1)y”
£, norm =|® (1<p<oo) (—o0,+00) @|”—pasgny|yl”" +p—1)|y|”
Exponential e” (—00,+00) e —(x—y+1)e
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Bregman Divergence
Definition
Examples
Properties

Appendix A. Properties

© Non-negativity. do(x,y) > 0,Vx € S, y € ri(S), and equality
holds IFF x = y. (Not a metric: not symmetric and triangle
inequality not hold)

@ Convexity. do is always convex in the 1st argument, but not
necessary convex in the 2nd argument. While, Squared
Euclidean distance and KL-divergence are convex in both of
their arguments.

© Linearity. Bregman divergence is a linear operator, i.e.,

Vx €S,y €ri(S),
dd>1+d>2(X7)/) :d¢1(X7y) + dd)g(xvy)
dC<|>(X7y) :Cd¢(Xay)7 c= 0
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Bregman Divergence
Definition
Examples
Properties

Appendix A. Properties

4 Equivalence classes. The Bregman divergences of functions that
differ only in affine terms are identical, i.e.,
ifd(x) = Po(x)+(b,x) + c, b € R, c € R, then
do(x,y) = do,(x,y),Vx € S,y € ri(S). Hence, the set of all strictly
convex, differentiable functions on a convex set S can be partitioned
into equivalence classes of the form

[Po] = {P|do(x,y) = do,(x,y),Vx € S,y € ri(S)}
5 Linear separation.
do (x, p11) =do(x, p12)
= O(x) = D(p1) — (x = p1, VO(p1)) =
P(x) — (p2) — (x = p2, VO(u2))
= (x, VO(p2) = VO(p1)) =
(P(p1) = ®(p2)) — ((pa, VO(111)) — (p2, VO(112)))
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Bregman Divergence
Definition
Examples
Properties

Appendix A. Properties

6 Dual divergences/Conjugate duality: let W(6) = ®*(0) be the
conjugate of ®(u) . Then do(u1, p2) = dy(62,61)

V() = &*(0) = sup, {67 u— d(u)}
—_——————

g(6,u)
Properties of conjugate function:
1). let0=V,g(0,u) =0 — Vo(u*)
2). ® convex =W convex
3). ® convex and closed = (¢*)* = ¢
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Bregman Divergence
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Proof of Conjugate duality

do (U1, un) = (1) — D(w) — (u1 — )" V()
i
() — Dwn) — (01 — )7 o + \JL 61— ul by
vV (6)
=b(u1) — D(u) — (B2 — 61) " VW(01) + 1l 62 — uf 6,
=[0] up — ®(w2)] — [0] i1 — d(u1)] — (62 — 02)T V¥ (61)
=W(6) — V(1) — (2 — 61)T VW (61)
=dy/(02,61)
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Bregman Divergence
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Properties

[7]Relation to KL-divergence

Let Fy be an exponential family with W as the cumulant function.

KL (pew o)l Pow.g,)) = dw(02,601) = do(p1, 1)
where pi1, ppare the expectation parameters corresponding to 61, 65.
Further, if W(0) = 0, then ppy g)(x) = po(x) is itself a valid
probability density and KL ( pw g)|| Paw,0)) = P (1), where
p=Vv(o)
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Bregman Divergence
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Examples
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[8] Generalized Pythagoras theorem

Nearness in Bregman divergence:
the Bregman projection of y onto a convex set Q2.

P =arg min Dy(w,
o (y) 9 min o(w,y)

When Q is affine set, the Pythagoras theorem
holds with equality.
Generalized Pythagoras theorem:

Wx € 0 Dp(x,y) > Dp(x, Po(y)) + Do(Pa(y),y)
Opposite to triangle inequality: s
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Bregman Divergence
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Examples
Properties

"Law of cosine”

2 =a2 442 —2ab cos(y)

Three point property generalizes the “law of cosine”:
Dy(x,y) = Dy(x,2) + Dy(z,y) = (x = 2)T (Vipy) — Vo(2))
Euclidean special case:

2 2 2 T
Ix =ylI"=lx=zI" +llz=ylI" =2(x=2)" (v — 2)
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Bregman Divergence
Definition
Examples
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Necessary & Sufficient conditions

A divergence measure d : S x ri(S) — [0,00) is a Bregman
divergence IFF there exists a € ri(S) such that the function
®,(x) = d(x, a) satisfies the following conditions:

Q@ &,(x) is strictly convex on S and differentiable on ri(S)

@ d(x,y) =do,(x,y),¥x € S,y € ri(S) where dy,is the
Bregman divergence associated with ®,

Proof of necessarity: any strictly convex, differentiable function @,
the Bregman divergence evaluated with a fixed value for the 2nd
argument differs from it only by a linear term, i.e.,

d,(x) = do(x,a) = P(x) — P(a) — (x — a, VP(a)) =

O(x) = (x, VO&(a)) — &(a) + (a, V&(a)) = ®(x) + (b, x) +

where b= —-V®(a) , c = —P(a) + (a, VP(a))



Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Centroid

Proved in class by Prof. Kogan.

For the data points above a;,1 </ < m, we want to find one point
closest to all data points,

define cost function: f(x) =7, [x — ai|>, we want to get

min f(x), then use the found x to represent a;,1 <i<m

xERN

et 0= — 4[5 (x—2)| =25 (x—a) =25 x 2% &
= mx =" ,a = x=13" a which is the mean of all data
points.
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Proposition 1

Let X be a random variable that takes values in
X = {x}"_, € S C R following a positive probability measure v
such that E, [x] € ri(S). Given a Bregman divergence

de : S x ri(S) — [0,00) , the problem

min : E, [do(X, )]

seri(S

has a unique minimizer given by st = u = E, [X].

Note the minimization is with respect to 2nd argument, surprising
since Bregman divergences are not necessarily convex in the 2nd
argument.

Math 710 Bregman Divergences



Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Proposition 1 - Proof

The function we are trying to minimize is

J¢(S) = Ev[dq> (X, S)] = 27:1 V,'C/q>(X,', S). Since

w= E,[X] € ri(S), the objective function is well-defined at u.
Now Vs € ri(S),

Jo(s) — Jo(12)

= Z V,'d¢(X,‘, S) — Z Vid<l>(Xi7 M)
i=1

i=1

=d(p) — d(s) — <Z ViXi — s, V¢(s)> + <Z ViXi — [, v¢(u)>
i=1 i=1

=®(p) — ®(s) — (n — s, VO(s))

=do(p1,5) > 0

with equality holds only when s =



Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Bregman Information

Definition (Bregman Information)

n

Let X be a random variable that takes values in X = {x;}/_; C S
following a probability measure v. Let

pw=E/ [X]=>",vixi € ri(S) and let dp : S X ri(S) — [0, c0)
be a Bregman divergence. Then the Bregman Information of X in
terms of dy is defined as:

lo (X) = Ey [do(X, p)] = 327y vide(xi, 1)

Example 5. Variance:

Let X = {x;}7_; be a set in RY, and uniform measure v; = % over

X. The Bregman Information of X with sqaured Euclidean
distance as the Bregman divergence is given by:
lo(X) = >-7 1 vide(xj, 1) , which is sample variance
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Bregman Information as Mutual information

Example 6. Mutual information:

By definition, the mutual information /(U; V) between 2 discrete random variables U
and V with joint distribution {{p (u,—, vj) }7:1 }szl is given by

- p(ui,v, J)
=33 ol s R P(u)p(4))

i=1 j=1

fzp(u,)Zp vj| uj) log Vf';’)
:Zp(u;)KL(P( VIu)ll p(V))
i=1

Consider RV Z,, taking values in the set of probability distributions

Zu = {p(V]uj)}._, following the probability measure {v;}7_; = {p(u;)}7_; over this
set. The mean (distribution) of Z, is given by:

1= Eo [p(VI)] = S0y p(un)p(Vie) = S0y plui, V) = p(V)

hence, I(U, V) = >7; vido(p(V|ui), 1) = lo(Zu), similiarly, I(U; V) = lo(Z,)
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Jensen’s Inequality and Bregman Information

Given any convex function ® , for any random variable X ,
Jensen's inequality: E [®(X)] > & (E [X])

E[®(X)] - @ (E[X])
=E[®(X)] - ®(E[X]) — E[(X — E[X], VO (E[X))]

0
—E[&(X) — & (E[X]) — (X — E[X], VO (E[X))]
—E[do (X, E(X))]
=lp(X) >0
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Clustering by Expected Bregman divergence

RV X takes values in X = {x;}!_; following prob measure v. When X has large
Bregman information, it may not suffice to encode X using single
representative since lower qunatization error may be desired.

Split the set X into k disjoint partitions {Xh}ﬁzl, each with its own Bregman
representative, RV M over the partition representatives as an appropriate
quantization of X, which is M = {un}_,, its probability as m» = 2o xex, Vi-
The quality of the quantization M can be measured by expected Bregman
divergence between X and M, i.e., Ex m [do(X, M)]. Since M is a deterministic
func of X , the expectation is actually over distribution of X ,

Ex [do(X, M)] =D > vid(xi, in)

h=1 x;€ X},

K
= Zﬂ'h Z TFL;CL»(X:', fh)
h=1

x; € X}

=Ex [lo (X5)]
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Viewpoint as Information-theoretic clustering

In Infromation-theoretic clustering, the quality of partitioning is measured in terms of
loss in mutual information resulting from the quantization of the original RV X, i.e.,
lo(X) — lo(M).

Hard clustering problem is defined as finding a partitioning of X', or equivalently,
finding the random variable M , such that the loss in Bregman information due to
quantization, Le(M) = lp(X) — lp(M) is minimized.

Theorem (Information theoretic clustering)

Let X be a RV that takes values in X = {x;}]_, C S C R? following positive

probability measure v. Let {Xh}ﬁzl be a partitioning of X and let
Th = D, cx, Vibe the induced measure m on the partitions. Let Xibe the RV
that takes values in X} following "V—’h for i € Xn, h=1,..., k. Let

M = {un}k_, with py, € ri (S) denote the set of representatives of {X}r_,,
and M be a RV that takes values in M following . then

Lo(M) = Io(X) — lo(M) = Ex [lo(Xn)] = D mn >~ do (xi 1)

h=1  xEXp
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Information-theoretic clustering Proof

I (X)

n K K

=D vido(xi ) =D D vide(xip) =D D vi{O(x) — S(p) — (xj — p, V(p))}
-1 h=1x X} h=1x;€X)

—Z Do vidO(a) = () = G = pny VO(up)) + (G — pp, VO(rp))
h=1x;€ X}
+0(pn) — (k) — (i — pp) + (up — 1), VO(u)}
K

= Z D> viddo(xi, 1n) + (xi — pny VO(rp) — V(1)) + do(1en, 1)}

X €Xp,

) k k )
T Y doloun) + D0 S vide(ua )+ D mh S - (x5 — s, VO(up) — V(1)

xiexy, h h=1x € X}, h=1 xjex, Th

M- M-

K K
vi
Thlo(Xn) + > whde(tn, 1) + > mh < ST —x = ph, VO(up) — V¢(#)>
1 h=1 h=1 xjexy Th
——
Hh

>
I

=Ex [lo(Xp)] + lo (M)
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Information-theoretic clustering interpretation

Within/Between cluster interpretation
e Total Bregman Information= lo(X) = Lo(M) + lo(M)
o Within-cluster Bregman Information

k
= Lo(M) = lo(X)~lo(M) = Ex [lo(Xn)] = > > vide (xi, 14p)

h=1 x;€X},

o Between-cluster Bregman Information= /l(M)

Using the theorem, Bregman clustering problem of minimizing the
loss in Bregman information can be written as

min (I (X) — lo(M)) = min (Z > vide (X;,uh)>

h=1 x;€X},
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Bregman Hard Clustering Algorithm

Input: Set x = x,cSC Rd, probability measure v over X', Bregman divergence dg : S X ri(S) — R,
i=1
number of clusters k.
Output: M, local minimizer of Lgy (M) = EE:1 ZX,’EX)-, vide (i, pp) where M = {Hh}f,:y hard
partitioning {Xh}::l of X.
Method: Initialize {ph}ﬁzl with p, € ri(S) (one possible initialization is to choose i, € ri (S)at random)
repeat
* The assignment Step
Set Xy — ¢,1 < h < k
for i=1 to n do
Xp = Xp U {xi}
where h = h(x;) = arg min,s de(xj, pyr)
endfor
* The Re-estimation Step
for h =1 to k do
Th < Xy Vi
Bh = e Yge e, ViXi
endfor
until convergence
i k
return M« {pp}p_y

1
™h
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Proof: Convergence and terminates in a finite steps at
local optimal partition

The Bregman hard clustering algorithm monotonically decreases the loss function
minw (lo(X) = lo(M)) = miny (Shoy Sen, vido (i, 1))

k
Let {X,st)}h . be the partitioning of X' after the tt/ iteration and let

k
t) — {;L;t)}hﬂ be the corresponding set of cluster representatives. Then,

M)y = Xk: > vide (Xi,uff)>

h=1 X,‘EX,(:)

k
Z Z (X” “sff)(x ))

h= I_GX[St)

K
> Z Z vide (XHMS-, H)) = Lo(MD)

h=1 Xi€X£t+1)

v
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Bregman Hard Clustering Bregman Information
Clustering formulation
Clustering Algorithm

Properties of hard clustering

@ Exhaustiveness: the algorithm works for all Bregman divergences
and only for Bregman divergences since the arithmetic mean is the
best predictor only for Bregman divergences.

@ Linear Separators: The locus of points that are equidistant to 2
fixed points u1, po in terms of a Bregman divergence is given by
X = {x|do (x, 1) = do (x, 2) }, i.e., the set of points,

{x 106 VO(u2) = VO(u1)) = (P(p1) — P(p2)) — ({p1, VO(p1)) — (2, VO(12))) }

@ Scalability: computational complexity of each iteration is linear in
number of data points and number of desired cluster for all
Bregman divergences.

@ Applicability to mixed data types: One can choose different
convex functions appropriate and meaningful for different subsets of
the features. We can build a convex combination corresponding to
Bregman divergence.
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Exponential Families
tion parameters and Legendre duality
Bijection with Exponential Families X ntial Families and Bregman Divergences
Bijection with Regular Bregman Divergences
Examples

Exponential families
Sufficient Statistic

Consider a family F of probability densities on a measurable space
(2, B) where B is a o-algebra on the set Q. Suppose every
probability density, py € F, is parameterized by d real-valued
variables 0 = {91-}7:1 so that

F={py=f(w;0) ’w €BHeTrCR}.

Let H: B~ G transforms any RV U: B— Rtoa RV V:G— R
with V = H(U). Then given the probability density py of U , H
uniquely determines the probability density gy govering the RV V .

Definition (sufficient statistic)

If Vw € B, pp(w)/qe(w) exists and does not depend on 6, then H
is called a sufficient statistic for the model F.
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Exponential Families

Expectation parameters and Legendre duality
Bijection with Exponential Families i

Bijection with Regular Bregman Divergences

Examples

Exponential families

Definition (exponential family, natural parameter)

If d-dimensional model F = {pg |6 € I'} can be expressed in terms of (d + 1)real-valued linearly independent
functions {C, Hy, ..., Hy} on B and a function W on I as f(w; 0) = exp {Zjd:l 0jHj(w) — () + C(w)} i
then F is called an exponential family, and 0 is called its natural parameter.

If 3x € R? such that xj = Hj(w), then density function g(x; ) = exp {Zle 0;x;j — () — )\(x)} for a
uniquely determined function A(x), is such that f(w; 0)/g(x; 0) does not depend on 6. Thus x is sufficient
statistic for the family.

Definition (exponential family, log-partition/cumulant function)

A multivariate parametric family Fy of distribution {p(w19)| 6ecrl C Rd} is called an exponential family if the
probability density is of the form: p(y g) = exp ((x, 0) — ¥(6) — A(x)). The function v() is known as log
partition function or the cumulant function and it uniquely determines the exponential family Fy . Further, given

Fy ¢ is uniquely determined up to a constant additive term. Amari [1995] showed I is a convex set in R? and P
is a strictly convex and differentiable function on int(I).
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Exponential Families
Expectation parameters and Legendre duality
Bijection with Exponential Families Exponential Families and Bregman Divergences
tion with Regular Br Di

E> ples

Expectation parameters and Legendre duality

Consider a d-dimensional real RV X following an exponential family density P(+,6) specified by natural parameter
6 € I'. The expectation of X with respect to P(y,0) » also called the expectation parameter, is given by:

1= 1(0) = Epy, gy X1 = fra xP(y,0)(x)x.

Amari [1995]showed that expectation and natural parameters have a one-one correspondence with each other and
span spaces that exhibit a dual relationship.

Theorem (Rockafellar, 1970)

Let Wbe a real-valued proper closed convex function with conjugate
function V*.Let © = int (dom (V)) and ©* = int (dom (V*)) . If (©, V)
is a convex function of Legendre type, then

O (O*,V*)is a convex function of Legendre type.

Q (©,V¥)and(©*,V*) are Legendre duals of each other,

© The gradient function VWV : © — ©* is a one-to-one function from
the open convex set © onto the open convex set ©*

© The gradient functions VW, VWU* are continuous, and
v = (Vv) L
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Exponential Families

Expectation parameters and Legendre duality
Bijection with Exponential Families Exponential Families and Bregman Divergences

Bijection with Regular Bregman Divergences

Example

Expectation parameters and Legendre duality

Differentiating 1 = [ p(y,9)(x)dx with respect to 6
0= g [ exp ((x,0) — (0) — A(x)) dx =

J (x = V(0)) py, 0y (x)dx

& Vip(0) [ prpg)(x)dx = [ xp(y,0)(x)dx

& VY (0)=p(0)=p

Let ® be defined as the conjugate of V, i.e.,

O (1) = suppeo {(1,0) — W(O)}

Then ® = W* and int(dom(®)) = ©* , thus by Legendre
transformation:

u(0) = VV(0) and O(p) = VO(u),

(1) = (0(1), 6) — W(O()), P € int (dom ()
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Exponential Families
Expectation parameters and Legendre duality
Bijection with Exponential Families Exponential Families and Bregman Divergences

Bijection with Regular Bregman Divergences
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Exponential Families and Bregman Divergences

log (p(s,0)(x)) = (x,0) = ¥(0) — A(x)
=[{w, 0) — (0)] = A(x) + (x — p,0)
=®(p) + (x — p, VO(u)) — A(x)
=[®(n) + (x = 1, VO(1)) — ®(x)] + (x) — A(x)
= —do (x, u(0)) + ®(x) — A\(x)

Theorem (4. pdf expressed by Bregman Divergence)

Let p(y,0)be the pdf of a regular exponential family distribution. Let ®be
the conjugate function of W so that (int (dom (®)), ®) is the Legendre
dual of (©,V). Let § € © be the natural parameter and

w € int (dom (®)) be the corresponding expectation parameter. Let dobe
the Bregman divergence derived from ®. Then p(y ¢y can be uniquely
expressed as P(y,0)(Xx) = exp (—dos (X, 1t)) bo(x), Vx € dom (P),
where be : dom () — R is a uniquely determined function.
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Bijection with Regular Bregman Divergences

Theorem (Devinatz, 1955)

Let © € R? be an open convex set. A necessary and sufficient condition
that there exists a unique, bounded, non-negative measure v such that
f:© Ry can be represented as f (0) = [ _pa exp ({x,0)) dv(x) is
that f is continuous and exponentially convex.

Lemma 2. Let V be the cumulant of an exponential family
with base measure Py and natural parameter space
© € RY.Then, if Py is concentrated on an affine subspaces of
R9, then W is not strictly convex.

Theorem (Bijection)

There is a bijection between regular exponential families and regular
Bregman divergences.
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Bijection with Regular Bregman Divergences

Examples

Examples

Distribution p(x; 0) m d(n) do (%, )
2
1-D Gaussian \/ﬁ exp [—%—;‘;L} a s 5o (x — )
1-D Poisson L\ exp(—)) A plogp —p xlog % — (x — 1)
1-D Bernoulli g (1—q)'™ q plogp+ (1 —p)log(l—p) xlog f+(1 — x) log }:z
1-D Binomial (Q’)qx(lfq)’v*x Ng ulog%Jr(N—,u)log# xlog % + (N — x) log x:ﬁ
1-D Exponential Aexp (—Ax) % —logp—1 5 —logi—1
s
d-D Sph. Gaussian W exp [—%] a 50 1l 5o |Ix — ul?
P d d-1 d / d
d-D multinomial %Hj:l q;(’ [Ng; =1 Di1 log % ijlleog;%
Distribution 0 w(h) dom (V) dom (®) Iy
1-D Gaussian E Z6 R R R
1-D Poisson log A expl R Ry N
1-D Bernoulli log 125 log (1 + exp0) R [0,1] {0,1}
1-D Binomial log 25 Nlog (1 + exp6) R [0,N] {0,1,...,N}
1-D Exponential -A - I?g (—0) R__ Ryt Ryt
d-D Sph. Gaussian ES 2 6| R? R? R?

d-D multinomial [Iog ;LL:II Nlog (1 + Zjd;ll expﬂj) RIL {/J, € Ri’l, || < N} {x c297l x| < N}

[
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Example 9, spherical Gaussian distributions

(x:3) ! ( oy ?)
p(x;a) =————=exp| ——— ||Ix — a
202

(27\’O‘2)d
2 2
S S A
(27ro'2)d o2 202 202

a2 1 5 1
=exp | (x,0) — > 1011% ) exp T 252 [Ix]| ﬁ
2mo

=exp ((x, 0) — W (0)) po (x)

. o? 2 2
L =VV¥(0)=V 7HGH =0c°=a

0,2 2
o =0 — v = (m L) - oy = L1

2 202
- lx— pll?
do (6, 1) =® (x) = &) — (= p, VO (1)) = ——
bo () = e (0 () o) = enp | PIE) 2 (ZIRIE) 1
® ° 202 (27ro'2)d 202 (27702)d

P, 6) (x) =exp (—do (x, 1)) bo (x)
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Bregman Soft clustering

Soft clustering as a mixture density estimation

Definition (Bregman Soft clustering problem)

as that of of learning the maximum likelihood parameters
[ = {0h, wh}r_y = {1, T}, of a mixture model of the form

k

p(x|lN) = thpwgh Zﬁhexp( do (x, n)) be (x)

h=1

By assuming the mixture components from same family, it can be solved
by EM algorithm.
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EM example of coin flipping

Do and Batzoglou [2008]

@ Maximum likelihood

Q@ HTTTHHTHTH 5H,5T
i 24
@ HHHHTHHHHH  9HAT 6753 46-080
@ HTHHHHHTHH |8H2T 9
G=g5 777045
@ HTHTTTHHTT 4H.6T
@ rHHHTHHHTH [ 7HaET

24H,6T OH, 11T
5 sots, 10105505 por set

b Expectation maximization

log P(x;6)

[ _conA__ | _cons |
045 x @) (f,f,xo 22H,22T 28H,28T
osox @ o020x Q) 7.2H,08T 1.8H,02T
orsx @ o027x @ 59H,15T 21H,05T
ossx@ oesx @) 14H,21T 26H,39T
oesx @ oasx Q) 45H,1.9T 25H,14T

21.3H,86T 11.7H,84T
£ so__ 213 "
% =z3+86~ 07
S— 117
O~ i yTe g~ 058 6/"~0.80
(7 4oz 9.
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Bregman Soft clustering

EM for Mixture models based on Bregman Divergence

Algorithm 2 EM for Mixture Density Estimation [18] Algorithm 3 Bregman Soft Clustering
Set X = {x}, € S C RY Bregman

Input: Set X = {x;}7o; C § € B num. of clusters k. Input:

Output: or, local maximizer of divergence Dy, num. of clusters k.
Lx(B®) = :'=I(Z;‘;=L mupn(x:0,)) where ® = Output: (Sh local maximizer of
{04, 7}k =1, soft partitioning {{p(h|x:)} oy iy T2 (ot wh fo(xi) exp(= Do (i, 1)) where
Method: © = {py,, ™ }f—y . soft partitioning {{p(h|x;)}i_, }oy
Initialize {8y, 74 }f_, with some 8}, € S, Method:
™ >0, ZLl p=1 Initialize {pt;,, mn}5_, with some p; € S, 7, > 0, and
repeat me =1

{The Expectation Step} repeat

fori=1tondo {The Expectation Step}

for h=1to k do for i=1tondo
TnPi (%] On) for h=1to k do

plhlxi) — ==
Lir=a TP (Xi100) mn exp(— Do (i pn))
end for plhfs) oy T exp(—= D (xisptyr))
end for end for
{The Maximization Step} end for
for h =1 to k do {The Maximization Step}
m = L3 plhlx:) for h =1 to k do
n n
B« angmax 1, og(pn (x:18) () 1 & i, U
end for Fo = %
end for

until convergence

return ©* = {@),, 7}, until convergence

return 0 = {#;,- 7:1}’;";:1
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Bregman Soft clustering

Extensions: Robustness

Geography faculty at the University of North Carolina like to point out that in 1986,
those who graduated with a major in Geography had the highest average starting
salaries in the class — $250,000. The punchline to this joke is that basketball legend,
Michael Jordon, graduated from UNC with a major in Geography in 1986. In that
particular dataset, Michael Jordan is clearly an outlier whose astronomical earnings

skew the results and obscure the real market for geography majors. (Ref:

http://www.forest2market.com /about/methodology/stumpage-price-database )

Definition (Robustness Check,Liu [2011])

Let X be the true centroid of set X = {x1,...,xn}. When €% (e small) of
outlier y is mixed into the set X, then the estimation of the centroid would be
influnced by the outliers, and denote the estimation as x = X + ez(y), where
the z(y) is called the influnce function. For ordinary Bregman divergence,

z = y,thus the breakdown point is 0%.
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Bregman Soft clustering

Extensions: Total Bregman diverg

Figure: Liu [2011] Ph.D Thesis page 16.

f bedy)
3oy [:

A B

Figure 2-1. d; (x, y) (dotted line) is BD, 4/(x, y) (bold line) is TBD, and the two arrows
indicate the coordinate system. A d(x, y) and é;(x, y) before rotating the
coordinate system. B d(x, y) and i (x, y) after rotating the coordinate
system.

Definition (Total Bregman divergence (TBD))

TBD§ associated with a real valued strictly convex and differentiable function f defined on a convex set X between
points x, y € X is defined as,

f(x) = f(y) = (x =y, VF(y))
L+ | V)2

3 (x,y) =
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Bregman Soft clustering

Extensions: Symmetry

Definition (Symmetry Extension, Leonenko et al. [2008])

Dy(r.) = [ a7+ 0 - (0700 o

Kq(f.g) = (17 [D4(F, &) + Da(e, 7)]
1

= =1 L, [F =gl [F70) — g7 ()] o
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