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Abstract—Divergence measures provide a means to measure the
pairwise dissimilarity between “objects,” e.g., vectors and proba-
bility density functions (pdfs). Kullback–Leibler (KL) divergence
and the square loss (SL) function are two examples of commonly
used dissimilarity measures which along with others belong to the
family of Bregman divergences (BD). In this paper, we present a
novel divergence dubbed the Total Bregman divergence (TBD),
which is intrinsically robust to outliers, a very desirable property
in many applications. Further, we derive the TBD center, called
the -center (using the �-norm), for a population of positive
definite matrices in closed form and show that it is invariant to
transformation from the special linear group. This -center, which
is also robust to outliers, is then used in tensor interpolation as
well as in an active contour based piecewise constant segmenta-
tion of a diffusion tensor magnetic resonance image (DT-MRI).
Additionally, we derive the piecewise smooth active contour model
for segmentation of DT-MRI using the TBD and present several
comparative results on real data.

Index Terms—Bregman divergence, diffusion tensor magnetic
resonance image (DT-MRI), Karcher mean, robustness, segmen-
tation, tensor interpolation.

I. INTRODUCTION

I N applications that involve measuring the dissimilarity be-
tween two objects (vectors, matrices, functions, images, and

so on) the definition of a divergence/distance becomes neces-
sary. A good divergence measure should be precise and sta-
tistically robust. The state of the art has many widely used di-
vergences. The square loss function (SL) has been used widely
for regression analysis; KL divergence [1], has been applied to
compare the difference between two pdfs; and the Mahalanobis
distance [2], is used to measure the dissimilarity between two
random vectors of the same distribution. All the aforementioned
divergences are special cases of the Bregman divergence which
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Fig. 1. In each figure, � ��� �� (dotted line) is BD, � ��� �� (bold line) is TBD.
Left figure shows � ��� �� and � ��� �� before rotating the coordinate system.
Right figure shows � ��� �� and � ��� �� after rotating the coordinate system.
� ��� �� changes with rotation while � ��� �� is invariant with rotation.

of late has been widely researched by many both from a theoret-
ical and practical viewpoint, see [3]–[5] and references therein.
At this juncture, it would be worth inquiring, why does one need
yet another divergence? The answer would be that none of the
existing divergences are statistically robust and one would need
to use M-estimators from robust statistics literature to achieve
robustness. This robustness however comes at a price, which
is, computational cost and accuracy. Moreover, some of the di-
vergences lack invariance to transformations such as similarity,
affine, etc. Such invariance becomes important when dealing
with for example, segmentation, it is desirable to achieve in-
variance to similarity or affine transformations that two different
scans of the same patient might be related by.

In this work, we propose a new class of divergences which
measure the orthogonal distance (in contrast to the ordinal dis-
tance used in Bregman divergence) between the value of a dif-
ferentiable convex function at the first argument and its tan-
gent at the second argument. We dub this divergence the total
Bregman divergence (TBD). A geometrical illustration of the
difference between TBD and BD is given in Fig. 1. is
the Bregman divergence between and based on a differen-
tiable convex function and is the TBD between and

based on the same differentiable convex function . We can
observe that will change if we apply a rotation to the
graph , while does not.

Bregman divergence has been widely used in clustering, a
ubiquitous task in machine learning applications. In clustering,
cluster centers are defined using either a distance or a diver-
gence. In this paper, we will define a cluster center using the
TBD in conjunction with the -norm that we dub the -center.
The t-center can be viewed as the cluster representative that
minimizes the -norm TBD between itself and the members
of a given population. We derive an analytic expression for the
-center which gives it a major advantage over its rivals (for
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example, the Riemannian median for SPD tensors). Since, the
TBD can be viewed as a weighted BD with the weight being
inversely proportional to the magnitude gradient of the convex
function, the -center can thus be viewed as a weighted median
of sorts. This weighting scheme makes -center robust to noise
and outliers, since it’s inversely dependent on the gradient of
the convex function. We prove the robustness property theoret-
ically in Section III and experimentally demonstrate it in the
experiments section. Another salient feature of the -center is
that it can be computed very efficiently due to its closed form
expression leading to efficient clustering algorithms, a topic of
our continuing research.

To illustrate the robustness and computational efficiency
properties of TBD, we applied our theory to the space of
order-2 symmetric positive definite (SPD) tensors which are
commonly encountered in applications such as diffusion tensor
magnetic resonance imaging (DT-MRI) [6], [7], computer
vision (structure tensors), elastography, etc. We prove that
TBD between SPD tensors is invariant to transformations from
the special linear group . Recall that, if ,
then implies . Given random vari-
ables and , where and ,

and are Gaussian distributions with zero
mean and covariances and , respectively, we can define

and generalize it to define . We can
show that is only related to and , thus,

. If , then ,
TBD has the property of ,

. We prove that the -center, , for a population
of SPD tensors has an analytic form; furthermore, -cen-
ters and corresponding to the original and transformed
tensors is related by and . This property makes
-center suitable for atlas construction applications in tensor

field processing, which is very useful in DT-MRI [8]–[11].
Atlases are usually defined as representatives (most often as an
average of sorts) of a population of images, shapes, etc. Atlas
construction using -center is efficient and robust to outliers,
a property that is derived theoretically and demonstrated ex-
perimentally in Section IV. Further, we present quantitative
comparisons between the proposed and other existing diver-
gences, such as the Frobenius norm [12], Riemannian metric
[9], [10], [13]–[15], symmetrized KL divergence [14], [16],
[17] and the log-Euclidean distance [18]. Although some of
these divergences are invariant to transformations in ,
none of them are statistically robust to outliers encountered in
tensor field processing. When using the Riemannian metric to
compute population statistics, neither the mean nor the median
can be computed in closed form, which makes this metric com-
putationally very expensive. Finally, we perform segmentation
on synthetic tensor fields and real DTI images using TBD and
compare the results with other divergences demonstrating the
efficiency and robustness of TBD to outliers over its rivals.

The rest of this paper is organized as follows. In Section II
we review the conventional Bregman divergence, followed
by the definition of TBD and derivation of its properties.
Section III introduces the -center, which is derived from TBD,
and delves into its better accuracy as a representative than cen-
ters obtained from other divergence measures or metrics. The

detailed description of the experimental design and results with
quantitative comparison with other divergence are presented in
Section IV. Finally, we draw conclusions in Section VI.

II. TOTAL BREGMAN DIVERGENCE

In this section, we first recall the definition of conventional
Bregman divergence [4] and then define the TBD. Both diver-
gences are dependent on the corresponding convex and differ-
entiable function that induces the divergence.

A. Definition of TBD and Examples

Definition II.1: The Bregman divergence associated with a
real valued strictly convex and differentiable function defined
on a convex set between points is given by

(1)

where is the gradient of at and is the inner
product determined by the space on which the inner product is
being taken.

For example, if , then is just the inner
product of vectors in , and can be seen as the dis-
tance between the first order Taylor approximation to at and
the function evaluated at . Bregman divergence is non-neg-
ative definite and does not satisfy the triangular inequality thus
making it a divergence. As shown in Fig. 1, Bregman divergence
measures the ordinate distance.

Definition II.2: The TBD associated with a real valued
strictly convex and differentiable function defined on a convex
set between points is defined as

(2)

is inner product as in definition II.1, and
generally.

Consider the Bregman divergence
obtained for strictly convex and differentiable

generator . Let denote the point of lying
on the graph . We visualize
the Bregman divergence as the -vertical difference between the
hyperplane tangent at and the hyperplane parallel to
and passing through

(3)

with . If instead of taking
the vertical distance, we choose the minimum distance between
those two hyperplanes and , we obtain the total Bregman
divergence (by analogy to total least square fitting where the
projection is orthogonal).

Since the distance between two parallel hyperplanes
and is , letting

and , and
, we deduce that the total Bregman divergence is

(4)
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TABLE I
TBD � CORRESPONDING TO � AND THE �-CENTER FOR A SET OF OBJECTS �� �. �� � �� �, �� � �� �, � IS THE TRANSPOSE OF �. � IS �-SIMPLEX.

� IS THE NORMALIZATION CONSTANT TO MAKE IT A PDF, � � �	 � � ����� �� 	� �	 � � ����� �� �

As shown in Fig. 1, TBD measures the orthogonal distance.
Compared to the BD, TBD contains a weight factor (the denomi-
nator) which complicates the computations. However, this struc-
ture brings up many new and interesting properties and makes
TBD an “adaptive” divergence measure in many applications.
Note that, in practice, can be an interval, the Euclidean space,
a -simplex, the space of non-singular matrices or the space of
functions [19]. For instance, in the application to SPD tensor in-
terpolation, we let and be two pdfs, and ,
then becomes what we call the Total Kullback–Leibler
divergence . Note that if is a pdf or a probability mass
function (pmf), then . More on
later in Section IV. Table I lists some TBDs with various asso-
ciated convex functions .

III. -CENTER

In many applications of computer vision and machine
learning such as image and shape retrieval, clustering, classifi-
cation, etc., it is common to seek a representative for a set of
objects having similar features. This representative normally is
a cluster center of sorts, thus, it is desirable to seek a center that
is robust to outliers and is efficient to compute. In this section,
we use the TBD to derive an -norm cluster center that we call
the -center, and explore its properties.

A. Definition

Let be a convex and differentiable function
and be a set of points in , then, the

between a point and associated with and
norm is defined as

(5)

The -norm center is defined as .
These centers bear the name of median , mean
and circumcenter . In this paper, we call the median

the -center and will derive an analytic form for the
-center and focus on its applications. Before delving into the
-center, we define the circumcenter and the centroid (mean).

B. -Norm Circumcenter

In the limiting case, the circumcenter amounts to solving for

(6)

does not have a closed form, even though it can be solved to
an arbitrarily fine approximation in Riemannian cases [5].

C. -Norm Centroid

(7)

Like the -norm circumcenter, -norm mean does not have a
closed form in general and is hence expensive to compute.

D. The -Norm -Center

Given a set , we can obtain the -norm -center of by
solving the minimization problem

(8)

Theorem III.1: The -center of a population of objects (densi-
ties, vectors, etc.) with respect to a given divergence exists, and
is unique.

Proof: To find , we take the derivative of
with respect to , and set it to 0, as in

(9)

Solving (9) yields

(10)

where is the weight that depends
on . Recall that TBD is convex for any fixed

, we know that is also convex as it is the
sum of convex functions. Hence, the solution to (9) exists and



478 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 30, NO. 2, FEBRUARY 2011

is indeed a minimizer of . Furthermore, since is convex,
is monotonic, so is unique.

To obtain an explicit formula for , we will make use of the
dual space. Suppose is the legendre dual function of in the
space , and the dual space is denoted as . Then ,

(11)
where and satisfy and . Thus far, we
know that the -center satisfies (10), meaning that its legendre
dual should satisfy ,
and .

Note that, in most cases, if is given, then we can get the
explicit form for , but does not have the same expression
for all convex functions, instead, is dependent on the convex
generator function for the chosen divergence. For a better il-
lustration of theorem III.1, we provide three concrete examples
of TBD with their -centers in analytic form. The first is for
the square loss function that we call total square loss (tSL), the
second is for the exponential function and the third is the total
Kullback–Leibler (tKL) as a measure of divergence between
probability densities.

tSL: , the -center ,

where ;
Exponentials: , the -center

, where ;
tKL: , which is the negative entropy [1],
and is a set of pdfs, the -center

(12)

is obtained by solving the Euler–Lagrange equation of
the minimization in (12), to obtain

where is a normalization constant such that
. Furthermore, the -centers for the most

commonly used divergences can be derived in analytic
form as shown in the Table I.

Theorem III.2: The -center is statistically robust to outliers.
Proof: The robustness of -center is analyzed by the influ-

ence function of an outlier . Let be the -center of
. When ( small) of outlier is mixed with ,

is influenced by the outliers, and the new center becomes to
. We call the influence function. The center

is robust when does not grow even when is very large.
The influence curve is given explicitly in the case of -norm.

is the minimizer of

(13)

Hence, by differentiating the above function, setting it equal to
zero at and using the Taylor expansion, we have

(14)

where , and
. Hence, the -center is robust when is

bounded, i.e., , is a constant

(15)

Since and , therefore

(16)

To make this proof more understandable, we give a simple
example of the Euclidean case when ,

. Then

(17)

and , when is large, this is
approximated by , which implies is
bounded, and the -center is robust for large .

Note that the influence function for the ordinary Bregman
divergence is , and hence is not robust.

Using the -norm -center has advantages over other cen-
ters resulting from the norms with in the sense that has
an analytic form and is robust to outliers. These advantages are
explicitly evident in the experiments presented subsequently.

IV. TBD APPLICATIONS

We now develop the applications of the -center in interpo-
lating diffusion tensors in DT-MRI data and segmentation of
tensor fields specifically DT-MRI.

A. SPD Tensor Interpolation Applications

We now define , the total Kullback–Leibler divergence
between symmetric positive definite (SPD) rank-2 tensors (SPD
matrices), and show that it is invariant to transformations be-
longing to the special linear group . Further, we compute
the -center using for SPD matrices, which has a closed
form expression, as the weighted harmonic mean of the popula-
tion of the tensors.

between order two SPD tensors/matrices and is de-
rived using the negative entropy of the zero mean Gaussian den-
sity functions they correspond to. Note that order two SPD ten-
sors can be seen as covariance matrices of zero mean Gaussian
densities. Suppose

(18)

(19)
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then

(20)

where . When
an transformation is applied on , i.e., , then

and . It is easy to see that

(21)

which means that between SPD tensors is invariant under
the group action, when the group member belongs to .
Given an SPD tensor set , its -center can be ob-
tained from (12) and

(22)

where
.

It can be seen that , . If a
transformation is applied, the new -center will be

, which means that if
are transformed by some member of , then the

-center will undergo the same transformation.
Also we can compute the between and from the

density functions , and , and the result is

also , which
means that is also invariant under transformations.
Similarly, we can also prove that the total Itakura-Saito dis-
tance and total squared Euclidean distance between SPD ma-
trices are invariant under transformations. For the rest of
this paper, we will focus on .

There are several ways to define the distance between SPD
matrices, e.g. using the Frobenius norm [12], Riemannian
metric [10], [13]–[15], symmetrized KL divergence [14], [16],
[17] and the log-Euclidean distance [18], respectively, defined
as

(23)

(24)

Fig. 2. The isosurfaces of � ��� �� � �, � ��� �� � �, �� ��� �� � � and
������ �� � � shown from left to right. The three axes are eigenvalues of � .

where , , are eigenvalues of

(25)

(26)

is not invariant to transformations in , ,
and are invariant to transformations in

, but none of them are robust to outliers encountered in
the data for e.g., in tensor interpolation. For , neither
its mean nor its median is in closed form, which makes it
computationally very expensive as the population size and
the dimensionality of the space increases. Here, the Karcher
mean denoted by is defined as the minimizer of the sum of
squared Riemannian distances and the median is minimizer
of the sum of Riemannian distances [9]

For simplicity in notation, we denote by ,
and . Even though there
are many algorithms (for example [8]–[10], [15]) to solve the
geodesic mean and median, most of them adopt an iterative
(gradient descent) method. Performing gradient descent on
matrix manifolds can be tricky and rather complicated in the
context of convergence issues (see [20]) and hence is not
preferred over a closed form computation.

in (25) has a closed form mean [14], [16], which is
, where is the arith-

metic mean of , is the harmonic mean of ,
and is the geometric mean of and . However, it can be
shown that the mean computed using sum of squared
divergences is not statistically robust since all tensors are
treated equally. This is because, neither nor the sum of
squared s are robust functions. This is demonstrated in
the experimental results to follow. First we will observe the
visual difference between the aforementioned divergences/dis-
tances. Fig. 2 shows the isosurfaces centered at the identity
matrix with radii , 0.5 and 1 respectively. From left to
right are , , and

. These figures indicate the degree of anisotropy
in the divergences/distances.

B. Piecewise Constant DTI Segmentation

Given a noisy diffusion tensor image (DTI) —a field
of positive definite matrices, our model for DTI segmentation is
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TABLE II
FROBENIUS NORM DISTANCE � , � DISTANCE, ANGLE BETWEEN THE PRINCIPLE EIGENVECTORS OF THE GROUND TRUTH AND THE EIGENVECTOR OF THE

MEAN/MEDIAN FOUND BY THE DIVERGENCES, AND THE DIFFERENCE BETWEEN THE FA OF THE GROUND TRUTH AND THE COMPUTED MEAN/MEDIAN ARE

SHOWN FROM LEFT TO RIGHT, TOP TO BOTTOM. THERE ARE 21 ORIGINAL TENSORS AND THE NUMBER OF OUTLIERS IS SHOWN IN THE TOP ROW OF EACH TABLE

based on the Mumford–Shah functional [21]

(27)
where and are control parameters, is the divergence
same as (20). is the region of the tensor field, is an ap-
proximation to , which can be discontinuous only along .
However, in a simplified segmentation model, a field can
be represented by piecewise constant regions [21], [22]. There-
fore, we consider the following binary segmentation model for
DTI:

(28)
is the -center of DTI for the region inside the curve and
is the -center of the DTI for the region outside

(29)

(30)

The Euler Lagrange equation of (28) is

(31)

where is the curvature, , and is the
normal of , . can be updated iteratively according
to the following equation:

(32)

At each iteration, we will fix , update and according
to (29) and (30), and then freeze and to update .

In the level set formulation of the active contour [23], let be
the signed distance function of and choose it to be negative

inside and positive outside. Then the curve evolution (32) can
be reformulated using the level set framework

(33)

C. Piecewise Smooth DTI Segmentation

For complicated DTI images, the piecewise constant assump-
tion does not hold. Therefore, we have to turn to the more gen-
eral model, the piecewise smooth segmentation. In this paper,
we follow Wang et al.’s [16] model but replace their divergence

with , resulting in the following functional:

the third term measures the lack of smoothness of the field using
the Dirichlet integral [24], giving us the following curve evolu-
tion equation:

where and are the sets of x’s neighboring pixels inside
and outside of the region respectively. In the discrete case,
one can use appropriate neighborhoods for 2-D and 3-D. We
apply the two stage piecewise smooth segmentation algorithm
in [16] to numerically solve this evolution.

V. EXPERIMENTAL RESULTS

We performed two sets of experiments here: 1) tensor inter-
polation and 2) tensor field segmentation. The experimental re-
sults are compared with those obtained by using other diver-
gence measures discussed above.
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TABLE III
TIME (SECONDS) SPENT IN FINDING THE MEAN/MEDIAN USING DIFFERENT

DIVERGENCES. THERE ARE 1000 ORIGINAL TENSORS AND THE NUMBER

OF OUTLIERS IS SHOWN IN THE TOP ROW

A. Tensor Interpolation

SPD tensor interpolation is a crucial component of DT-MRI
analysis involving segmentation, registration and atlas construc-
tion [25], where a robust distance/divergence measure is very
desirable. First, we perform tensor interpolation on a set of ten-
sors with noise and outliers. We fix an SPD tensor as the
ground truth tensor and generate noisy tensors from it by
using a the Monte Carlo simulation method as was done in [26],
[27]. This entails, given a -value (we used 1200 ) a zero
gradient baseline image , and six vectors , the magni-
tude of the noise free complex-valued diffusion weighted signal
is given by, . We add Gaussian dis-
tributed (mean zero and variance ) noise to the real and
imaginary channels of this complex valued diffusion weighted
signal and take its magnitude to get .
then has a Rician distribution with parameters . is ob-
tained by fitting the using Log-Euclidean tensor fitting.
To generate outliers, we first generate a 3 3 matrix , with
each entry drawn from the normal distribution, and the outlier
tensor is given by . We compute the eigen-
vectors and eigen-values of , i.e. , and
then rotate by a rotation matrix in 3-D, to get ,
where , and are uniformly distributed in . Then the
outlier is given by . To gen-
erate an image, the same process is repeated at every randomly
chosen voxel.

The -center, the geometric median, the geometric
mean, the mean and the log-Euclidean mean for 21
SPD tensors along with 0, 5, 10, 15, and 20 outliers are then
computed. The difference between the various means/medians,
and the ground truth are measured in four ways, using the
Frobenius norm , the distance ,
angle between the principal eigenvectors of and , and the
difference of fractional anisotropy index (FA) ([28], [29]) for

and , i.e., . The results are shown in
Table II from left to right, top to bottom.

From the tables, we can see that the -center yields the best
approximation to the ground truth, and faithfully represents
the directionality and anisotropy. The robustness of -center
over others such as the Riemannian mean and median,
mean, and log-Euclidean mean is quite evident from this table.
Even though geometric median seems to be competitive to the
-center obtained using in the case of lower percentage of

outliers, the geometric median computation however is much
slower than that of -center computation. This is because the
-center for has a closed form while the geometric median

does not. Table III shows the CPU time to find the tensor

Fig. 3. From left to right are initialization, intermediate step, and final segmen-
tation.

Fig. 4. Dice coefficient comparison for ���,�� , � , � , and�� segmen-
tation of synthetic tensor field with increasing level (x-axis) of noise.

Fig. 5. Dice coefficient comparison for ���,�� , � , � , and�� segmen-
tation of synthetic tensor field with increasing percentage (x-axis) of outliers.

mean/median using different divergences. We use 1000 SPD
tensors, along with 0, 10, 100, 500, and 800 outliers respec-
tively. All tensors are generated in the same way as described
in the first experiment. The time is averaged by repeating the
experiment 10 times on a PC, with Intel Core 2 Duo CPU
P7370, 2 GHz, 4 GB RAM, on 32-bit Windows Vista OS.
Table II and III depict the superior robustness to outliers and
the computational efficiency in estimating the tKL -center for
SPD tensor interpolation in comparison to its rivals.

B. Tensor Field Segmentation

We now describe experiments on segmentation of synthetic
and real DTI images.

1) Segmentation of Synthetic Tensor Fields: The first syn-
thetic tensor field is composed of two types of homogeneous
tensors. Fig. 3 depicts the synthetic data and the segmentation
results. We added different levels of noise to the tensor field
using the method described in Section V-A, segmented it using
the aforementioned divergences and compared the results using
the dice coefficient [30]. We also added different percentages of
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Fig. 6. (a)–(c) Initialization. (d) Segmentation results, from left to right, using ���, �� , � , � , and ��.

outliers to the tensor fields and segmented the resulting tensor
fields. Fig. 4 depicts the comparison of segmentation results
from different methods using the dice coefficient, for varying
noise levels with varying from 0, 0.02, 0.04, , 0.2). Fig. 5
displays the comparison of dice coefficient with different per-
centage of outliers. The results show that even
in the presence of large amounts of noise and outliers,
yields very good segmentation results in comparison to rivals.
However, in our experiments, we observed that the segmentation
accuracy is inversely proportional to the variance of the outlier
distribution.

2) Segmentation of DTI Images: In this section, we present
segmentation results on real DTI images from a rat spinal cord,
an isolated rat hippocampus and a rat brain. The data were ac-
quired using a PGSE with , , band-
width , 21 diffusion weighted images with a -value
of 1250 were collected. A 3 3 diffusion tensor in each
DTI image is illustrated as an ellipsoid [16], whose axes’ direc-
tions, and lengths correspond to its eigen-vectors, and eigen-
values, respectively. The same initialization is used for each di-
vergence based segmentation. We let all the divergence based
methods run until convergence, record their time and compare
the results.

We apply the piecewise constant segmentation model on a
single slice (108 108) of the rat spinal cord, and apply the
piecewise smooth segmentation model on the molecular layer

TABLE IV
TIME (SECONDS) COMPARISON FOR SEGMENTING THE RAT SPINAL CORD,
CORPUS CALLOSUM AND HIPPOCAMPUS USING DIFFERENT DIVERGENCES

from single slices of size (114 108) for rat corpus callosum
(CC) and (90 90) for the rat hippocampus, respectively.
Fig. 6(a)–(c) shows the initialization, Fig. 6(d) shows the seg-
mentation results, and Table IV records their execution time.
The results confirm that when compared to other divergences,

yields a more accurate segmentation in a significantly
shorter amount of CPU time.

Apart from segmentation in 2-D slices, we also demonstrate
3-D DTI image segmentation using the proposed divergence.
Fig. 7 depicts the process of segmenting rat corpus callosum

using the piecewise constant segmentation
model. The result demonstrates that can segment this white
matter bundle quite well.

VI. CONCLUSION

In this paper, we developed a novel divergence dubbed the
TBD, that is intrinsically robust to noise and outliers. The goal
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Fig. 7. tKL segmentation of a 3-D rat corpus callosum. (a)–(d) A 2-D slice of
the corresponding evolving surface, from left to right are initialization, interme-
diate steps and final segmentation. (e) A 3-D view of the segmentation result.

here was not simply to develop yet another divergence mea-
sure but to develop an intrinsically robust divergence. This was
achieved via alteration of the basic notion of divergence which
measures the ordinate distance between its convex generator
and its tangent approximation to the orthogonal distance be-
tween the same. This basic idea parallels the relationship be-
tween least-squares and total least squares but the implications
are far more significant in the field of information geometry and
its applications since the entire class of the well known Bregman
divergences have been redefined and some of their theoretical
properties studied. Specifically, we derived an explicit formula
for the -center which is the TBD-based median, that is robust
to outliers. In the case of SPD tensors, the -center was shown
to be invariant. However, the story is not yet complete
and further investigations are currently underway.

The robustness (to outliers) property of TBD was demon-
strated here via applications to SPD tensor field interpolation
and segmentation. The results favorably demonstrate the com-
petitiveness of our newly defined divergence in comparison to
existing methods not only in terms of robustness, but also in
terms of computational efficiency and accuracy as well. Our fu-
ture research will focus on applications of TBD to atlas con-
struction, registration and other such tasks applied to DWMRI
acquired from human brains.
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