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Abstract

We introduce a new copula which simultaneously allows fully-general cor-
relation structures in the bulk of a multivariate distribution and an arbitrarily
high degree of dependence in the left tails. This is ideally suited for modeling
financial assets which may display moderate correlation in normal times, but
which experience simultaneous left tail events, such as during a financial crisis.
Our new copula is shown to be fully flexible in the sense that the user can spec-
ify a desired structure for a sequence of increasingly dire events in the left tail,
while still retaining the same correlation structure in the bulk. We illustrate
the use of this copula with an application to hedge fund returns.

1 Introduction

Modeling the bulk and the tails of a multivariate distribution simultaneously re-
quires a balancing act that is difficult if not impossible to achieve with the well-
known copulas. In this paper we construct a multivariate density which resembles
an elliptical distribution in its bulk, but has the following two properties in its tails:

1. Association that is more extreme in the tails than in the bulk of the distribu-
tion

2. Association that is asymmetric between the upper and lower tails

We achieve this by introducing a new “Cube copula”, that can accommodate arbi-
trarily precise modeling of the joint tails. We then describe two methods to break
the link between the tails and the bulk of the distribution, copula mixing and copula
nesting, and we illustrate with an application to hedge fund returns.

Copulas have become a key addition to the financial modeler’s toolkit in the
past decade. Formally, a copula is a multivariate cumulative distribution function
defined on the unit cube such that its marginals are uniform. A key theorem, due
to Sklar [34], lays out the use of such a function – for any set of marginal dis-
tributions defined on the reals, and any joint distribution function, there exists a
copula that reproduces the joint distribution when applied to the marginal distri-
bution functions. Modulo continuity conditions on the marginals, this copula is
unique. The reason for the appeal to financial modeling is that researchers often
have better information about marginal distributions than joint distributions, and a
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copula approach lets them fully use this information, and then choose from a small
menu of well-known copulas to splice them into a joint distribution.

The set of well-known copulas leaves much to be desired when modeling finan-
cial returns. A brief, stylized history of univariate return modeling is instructive.
Early modeling of financial (log) returns relied heavily on the Gaussian distribu-
tion, primarily for its analytical tractability. However, returns typically exhibit kur-
tosis much greater than that of the Gaussian, and so modelers expanded into fatter
tailed distributions, such as the Student’s-t and Generalized Extreme Value. In the
multivariate case, the Gaussian copula played a similarly tractable role in early
applications. The Gaussian copula is defined (via Sklar) as that copula which com-
poses univariate Gaussians into a multivariate Gaussian. Just as in the univariate
case, the Gaussian copula imposes a particular structure in the joint tails of multi-
variate distributions that is often empirically violated. Specifically, and we define
this concept rigorously in section 2.3.1, the Gaussian copula requires that variables
become asymptotically independent in the tails, while in practice, dependence even
in extreme tail events often remains strong.

The “fix” has often been to simply move to a copula with a fatter joint-tail, such
as the Student’s-t copula, which is that copula that composes Student’s-t marginals
into a multivariate Student’s-t. Other popular copulas with non-zero asymptotic tail
dependence are the Archimedean copulas, which encompasses the Clayton, Frank,
and Gumbel copulas. However, in making this move, one loses control of the ability
to model both the bulk of the multivariate distribution and the joint tails. For exam-
ple, the bivariate Student’s-t copula has two parameters, η, the degrees of freedom,
and correlation ρ. The amount of left tail dependence is a decreasing function of η
and an increasing function of ρ. Thus ρ and η can serve as tuning parameters for
tail dependence. However, neither of these parameters changes solely tail depen-
dence. The ρ parameter is in fact the correlation of the bivariate distribution in the
case of Student’s-t marginals, so that a side effect of increasing tail dependence via
increasing ρ is a stronger dependence in the bulk of the distribution. Frequently
in applications we will have an estimate of correlations in the bulk of the distri-
bution, and want to increase tail dependence while holding fixed the correlation
in the bulk. The η parameter is less intuitive, but has equally unattractive proper-
ties upon scaling. First, η has limited ability to generate extreme tail dependence.
Figure 1 plots the tail dependence as a function of η for several values of ρ.

For example, with ρ = 0.3 the maximum achievable tail dependence is 0.41.
Furthermore, very low values of η generate behavior that most would consider odd
in the upper left and lower right quadrants of the multivariate.

Fig. 2 plots a Monte Carlo simulation of the t copula with ρ = 0.3 for η ∈
{10, 5, 2}. Note the extreme right tail outliers in univariate Y that are associated
with left tail outliers in univariate X with increasing frequency as η decreases. The
intuition for this behavior is that the t copula needs to enforce correlation ρ, and
so must balance out what we call the “double-tail” observations with “anti-double-
tail” points.
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Figure 1: Tail dependence λL as a function of η for several ρ = 0.1 . . . 0.9.

Figure 2: the t copula with ρ = 0.3 for η ∈ {10, 5, 2}

2 The Cube Copula

2.1 Construction in n-dimensions

Definition 1. Let X be a random variable on the sample space Ωn = [0, 1]n. Let a be
an element of Ωn. If X i ≤ ai then we say that X experiences an i-th tail event (with
respect to a).

For an arbitrary set of indices I ⊆ {1, . . . , n}, define the set

TI = {x ∈ Ωn | x j ≤ a j if and only if j ∈ I}.

Furthermore when I has cardinality |I |= k, we refer to TI as a k-tail region.

In other words, a k-tail region is a subset of the sample space with exactly k of
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the variables experiencing tail events simultaneously. For any fixed k, the number
of k-tail regions equals

�n
k

�
.

Let τk,n denote the union of all k-tail regions in Ωn. The sets τk,n for various k
form a partition of Ωn; that is,

Ωn =
n⋃

k=0

τk,n, τk,n ∩τ`,n = ; if k 6= `. (1)

Figure 3 illustrates the 2-tail and 3-tail regions for n= 3 and a= (0.1, 0.1, 0.1)

Figure 3: The 2-tail and 3-tail regions for n= 3

Theorem 1. Consider a real vector q = (q0, . . . , qn) ∈ Rn+1 and the corresponding
density on Ωn:

pc(x) = qk when x ∈ τk,n. (2)

Then pc is a copula density if and only if conditions (a) and (b) below are met:

(a) Total Density Condition

Defining vk,n[a] := vol(τk,n), one has

1=
∑

k

qk vk,n[a], (3)

(b) Unit Marginals Condition

Defining â( j) = (a1, a2, . . . , a j−1, a j+1, . . . , an), one has for all j:

M j,1 :=
n∑

i=1

qi vi−1,n−1[â
( j)] = 1 (4)

M j,2 :=
n∑

i=1

qi−1vi−1,n−1[â
( j)] = 1. (5)
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Furthermore, one has

vk,n[a] =
∑

|I |=k

vol(TI) =
∑

|I |=k

h∏

i∈I

ai

∏

j∈I c

(1− a j)
i

. (6)

where the sum is over the
�n

k

�
subsets I ⊆ {1, 2, . . . , n} with length k, and I c is the

complement of I .

Proof. In order that (2) be a probability density, we must have
∫

Ωn

pc(x) d x = 1=
∑

k

vk,n[a]qk, where vk,n[a] := vol(τk,n). (7)

This is condition (a) in the theorem. To prove (6), and thus derive an explicit
formula for (3), we must calculate vk,n[a]. Note that τk,n is the union of

�n
k

�
connected components, each a rectangular prism. Let I ⊆ {1, 2, . . . , n}; then for
k = |I | the region TI defined above is one of the

�n
k

�
components of τk,n. The

volume of such a region is the product of its side lengths, and the regions are
disjoint as noted above in eq. (1). This establishes (6).1

In order that pc(x) forms a copula density, we require the condition of uniform
marginals:

m j(x j) =

∫

[0,1]n−1

pc(x)
∏

i 6= j

d x i = 1. (8)

We claim that each m j is a step function on [0, 1], and more specifically can be
written in the form

m j(x j) =

¨
M j,1 if x j ≤ a j ,

M j,2 if x j > a j
. (9)

where M is an n× 2 matrix that is a polynomial function of q and â( j). We now
focus on establishing the representation (9) by calculating the required integrals
explicitly.

The marginal m j(x j) is given by the integral of pc over the lower-dimensional
“slice”

S(x j) = {y ∈ Ωn : y j = x j}
with respect to n− 1 dimensional volume, i.e.

m j(x j) =

∫

S(x j)

pc(z)
∏

i 6= j

dzi . (10)

Since pc(x) is a step function, (10) can be written as a finite sum of density times
volume; it remains to determine the explicit form of this sum.

1In the special case a= (a, a, . . . , a), this simplifies to vk,n =
�n

k

�
ak(1− a)n−k .
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The slice S(x j) is isomorphic Ωn−1 and hence has the same combinatorial struc-
ture as the original problem in one lower dimension. For each k = 0, 1, . . . , n− 1
the slice S(x j) has

�n−1
k

�
connected components which play the role of k-tails in

Ωn−1. The side lengths for the resulting partition of Ωn−1 are determined by the
truncated vector â( j) defined in part (b) of the theorem. Hence our strategy is to
use a form of induction on n.

First consider the case x j ≤ a j; then the q-vector relevant for calculating the
(n − 1) dimensional density on the slice is (q1, q2, . . . , qn), because S(x j) doesn’t
intersect the 0-tail in Ωn. The set of points in S(x j) where pc = qi has the structure
of an (i− 1) tail region in Ωn−1, and is a subset of an i-tail in Ωn. Hence

M j,1 =
n∑

i=1

qk vi−1,n−1[â
( j)]. (11)

For the case x j > a j the logic is the same, but instead of working with (q1, q2, . . . , qn)
we have to work with (q0, q1, . . . , qn−1) because S(x j) intersects the 0-tail but not
the n-tail in Ωn. In this case the set of points in S(x j) where pc = qi has the struc-
ture is a subset of an (i − 1)-tail in Ωn. Hence we shift the index on q in (11) to
yield

M j,2 =
n∑

i=1

qi−1vi−1,n−1[â
( j)]. (12)

With this, we establish that formulas (4) and (5) are correct, and complete the
proof. �

Note also that for any a and for any n there is always at least one q that trivially
defines a Cube copula, namely q = (1, 1, . . . , 1). In fact we conjecture that there
are always infinitely many such consistent q; the argument involves the degrees of
freedom allowed in the Unit Marginals Condition.

For the remainder of the paper we assume that a = (a, a, . . . , a); our results
below hold more generally but this assumption simplifies notation considerably.
For instance, with this assumption, the Total Density Condition and Unit Marginals
Conditions of Theorem 1 simplify to just three equations:

(a) Total Density Condition

1=
∑

k

vk,nqk where vk,n =
�

n

k

�
ak(1− a)n−k (13)

(b) Unit Marginals Condition

1=
n∑

i=1

qi vi−1,n−1 =
n∑

i=1

qi−1vi−1,n−1. (14)

6



2.2 Examples: 2 and 3 dimensions

In n= 2 dimensions eq. (6) implies

v = (v0,2, v1,2, v2,2) = ((1− a)2, 2a(1− a), a2).

We then have the copula conditions as in Theorem 1:

(1− a)2q0 + 2a(1− a)q1 + a2q2 = 1

(1− a)q1 + aq2 = 1

(1− a)q0 + aq1 = 1

These equations can of course be solved explicitly; we choose to express the solu-
tion in terms of q2, the density in the double-tail region:

q0 =
1− 2a+ a2q2

(a− 1)2
, q1 =

aq2 − 1

a− 1
.

Positivity of q0, q1 give the constraint that (2a − 1)a−2 ≤ q2 ≤ a−1. This implies
0 ≤ q0 ≤ (1− a)−1 and 0 ≤ q1 ≤ a−1. These constraints are useful in maximum-
likelihood optimization to guide the optimizer and ensure that it doesn’t go outside
the valid parameter space.

In n= 3 dimensions eq. (6) implies

v = (v0,3, . . . , v3,3) = ((1− a)3, 3a(1− a)2, 3a2(1− a), a3).

Again as in Theorem 1, the conditions for a copula are:

(1− a)3q0 + 3a(1− a)2q1 + 3a2(1− a)q2 + a3q3 = 1

(1− a)2q1 + 2a(1− a)q2 + a2q3 = 1

(1− a)2q0 + 2a(1− a)q1 + a2q2 = 1

In any number n of dimensions, we can represent this system as Aq = 1 where A is
a 3× n+ 1 matrix. Hence in n dimensions there is a space of solutions (copulas)
which is of dimension n − 2 + p, where p is the dimension of the null space of
A. We showed above that for n = 2, we have p = 1 and the solution space is
one-dimensional.

2.3 Properties of the Cube Copula

Above we referred to “tail dependence” informally, but there is a natural definition
that is standard within the copula literature. We provide this definition, and com-
pute the tail dependence of our Cube copula. This tail dependence, and its finite
analog, serve as parameters that we can estimate/calibrate when applying the Cube
copula to data. In addition, we consider three broader measures of association –
Pearson’s product-moment correlation, Spearman’s rank correlation, and Kendall’s
τ – that we will use later to parameterize the relationships that exist within the
bulk of a multivariate distribution.
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2.3.1 Tail Dependence

Tail dependence between a pair of distributions is typically formalized via a condi-
tional tail probability called the coefficients of tail dependence:

Definition 2. Let X , Y be random variables with cdfs FX and FY , with H as their
bivariate cdf. The lower-u tail dependence of H is

λL−u = P
�

Y < F−1
Y (u) |X < F−1

X (u)
�

=
H(F−1

X (u), F−1
Y (u))

u

Note that the bivariate cdf H is symmetric by its definition, and so lower-u tail depen-
dence is a symmetric property.

Similarly define the upper-u tail dependence of H as

λU−u = P
�

Y > F−1
Y (u) |X > F−1

X (u)
�

=
1− 2u−H(F−1

X (u), F−1
Y (u))

1− u

The limits of these quantities as are the lower tail dependence and upper tail
dependence, respectively (provided that the limits exist):

lim
u↘0
λL−u = λL , lim

u↗1
λU−u = λU .

We can use Sklar’s theorem to establish tail dependence as a property of the
copula, independent of the marginals.

Theorem 2. Sklar (1959) Let X , Y be random variables with cdfs FX and FY , with
H as their bivariate cdf. There exists a copula C such that

H(x , y) = C(FX (x), FY (y)).

If FX and FY are continuous, then C is unique.

If C is H ’s corresponding copula in the definition of λL−u and λU−u, then by
Sklar’s Theorem, λL−u =

C(u,u)
u

and λU−u =
1−2u−C(u,u)

1−u
.
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Note that the CDF of the Cube copula, F , in the bivariate case is given by

F(u, v) =

∫ v

0

∫ u

0

f (x , y)d xd y

=





q2uv if u≤ a, v ≤ a

u[q2a+ q1(v− a)] if u≤ a < v

v[q2a+ q1(u− a)] if v ≤ a < u

q2a2 + q1a[(v − a) + (u− a)] + q0(u− a)(v − a) if u> a, v > a

So,

λL−u =

¨
q2u if u≤ a
[q2a2 + 2q1a(u− a) + q0(u− a)2]/u if u> a

and

λU−u =





1−2+q2u
1−u

if u≤ a

1−2u+q2a2+2q1a(u−a)+q0(u−a)2

1−u
if u> a

Note in particular, λL and λU , the limiting values, are zero. So, the Cube copula
allows for precise modeling of λL−u, but because its density is bounded, the lower
tail dependence vanishes at arbitrarily small percentiles. In section 4 we propose a
method for modeling not just a single λL−u but a countably infinite set of lower tail
dependencies.

2.3.2 Measures of Association

Many authors have commented on the shortcomings of Pearson’s product-moment
correlation, ρP , for measuring associations in copula-based models. The most ob-
vious is that ρP is not defined when marginals have infinite second moments, for
example tη with η ≤ 2, and many copula applications use such fat-tailed distribu-
tions.

A second shortcoming is that ρP is not a copula property. That is, ρP depends
on both the copula and the marginal distributions. This contrasts with Spearman’s
rank correlation and Kendall’s tau, ρS and ρτ respectively, both of which are copula
properties. Here we focus on ρS rather than ρτ, for reasons described in Sec. 3 on
copula mixtures.

For a copula with cdf F , we have ρS = 12
∫ 1

0

∫ 1

0
F(x , y)d xd y −3. For the Cube

copula then we have

ρS(F) = 3(a− 1)4q0 + 3(a− 2)2a2q2 − 12a(a− 1)3(a+ 1)q1 − 3 (15)
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Our explicit formula (15) for the Spearman correlation of a Cube copula will prove
useful in Sec. 3, when we consider mixing the Cube copula with another copula in
order to achieve a desired correlation in the bulk of the distribution.

3 Mixing the Cube Copula

Above we constructed a copula with unusually high tail-dependence; indeed the
tail dependence arising from this copula is maximally high within the space of
copulas that have the particularly simple structure we have laid out. However,
the correlation with the bulk is zero by construction. How can we incorporate a
non-zero bulk correlation structure together with tail dependence? We use a simple
result that any mixture of two copulas is again a copula. We can then take a convex
combination of a Cube copula with another copula that exhibits bulk correlation,
and the resulting copula will exhibit both left tail dependence and bulk correlation.

3.1 Properties of Copula Mixtures

Definition 3. Let V be a real vector space, and let K ⊆ V be any convex subset. A
function f : K → R is said to be convex-linear if

f (t x + (1− t)y) = t f (x) + (1− t) f (y) for all t ∈ [0, 1], x , y ∈ K .

Note that convex-linearity extends naturally to compositions with affine maps
in either order. Specifically if f : V → R is convex-linear and φ : V → V is an
affine map defined by φ(x) = Ax + b, then f ◦φ is also convex-linear. Similarly if
φ′ : R→ R is affine, then φ′ ◦ f is again convex-linear. These statements remain
true when the target space R is replaced by an arbitrary vector space, but we will
only use the real-valued case.

3.1.1 Tail Dependence

Let Ck denote the set of k-variate copulas; note that Ck is a convex subset of the
vector space of all functions from Ω2→ R, hence def. 3 applies. Consider λL−u, the
lower-u tail dependence of the previous section, as a real-valued function defined
on C2.
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Let C1 and C2 be bivariate copulas, and t ∈ [0, 1]. Note that

λL−u(tC1 + (1− t)C2) =
1

u
�

tC1 + (1− t)C2
�
(u, u)

= t
C1(u, u)

u
+ (1− t)

C2(u, u)
u

= tλL−u(C1) + (1− t)λL−u(C2).

So λL−u is convex-linear, and the lower-u tail dependence of a mixture copula is the
mixture of the component copulas’ lower-u tail dependencies. Also convex-linear
is λL = limu↘0λL−u, provided that the limits of the components’ exist.

3.1.2 Correlations

Let (X1, Y1) and (X2, Y2) be independent continuous random variables with com-
mon margins F (of X1 and X2) and G (of Y1 and Y2). Let Ci denote the copula of
(X i , Yi). Define

Q = P[(X1 − X2)(Y1 − Y2)> 0]− P[(X1 − X2)(Y1 − Y2)< 0].

as in [9]. Then

Q =Q(C1, C2) = 4

∫
C2dC1 − 1=Q(C2, C1). (16)

It is immediate from (16) that Q is convex-linear in each of its two arguments, if
the other is held fixed. Let Π denote the independence copula (constant density).

Two popular non-parametric measures of concordance are Kendall’s tau defined
as ρτ(C) =Q(C , C), and Spearman’s rho given by ρS(C) = 3Q(C ,Π). From the ob-
servation that Q is convex-linear in each argument, it follows that ρS(C) is convex-
linear in C , while

ρτ(tA+ (1− t)B)

is a polynomial of degree 2 in t, hence cannot be convex-linear. Similarly, Gini’s
coefficient

γ= 2

∫
(|u+ v− 1| − |u− v|)dC(u, v)

and Blomqvist’s “medial correlation” β = 4C( 1
2
, 1

2
)− 1 are also convex-linear func-

tions of C .

Finally, we remark that the n-dimensional Spearman’s ρS , given by

ρS,n =
n+ 1

2n − (n+ 1)

h
2n−1�

∫
C dΠn +

∫
ΠndC

�− 1
i

is convex-linear on the convex cone of n-copulas.
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These considerations imply that when dealing with mixture copulas, all of the
usual measures of concordance except Kendall’s τ are convex-linear and can be
summed across the components of the mixture.

3.2 The Cube-Gaussian Mixture Copula

Let ρ be an n × n correlation matrix. The Gaussian copula with correlation ρ is
defined by its PDF:

pg(u) = |ρ|−1/2 exp[−1

2
ζ′(ρ−1 − I)ζ] where ζ= Φ−1(u).

Here Φ is the normal CDF applied componentwise to vectors, and u ∈ [0, 1]n.
Building on this we define the Cube-Gaussian mixture copula by

pgt(u) = λpc(u) + (1−λ)pg(u). (17)

Here λ ∈ [0, 1] is the mixture probability. One can view this as a hierarchical
model, where a mixing random variable defined on {0, 1} determines which copula
that X will be drawn from.

Eq. (17) is our first example of a copula which has desirable properties for
modeling portfolios of risky assets. In the bulk of the distribution, i.e. the region
in which assets in the portfolio are not experiencing VaR events individually, the
assets behave as though they have correlation matrix ρ, but if one or more assets
is experiencing a VaR event, the conditional probability that others are also seeing
their VaR events is much higher than it could be with a Gaussian copula or a t-
copula.

One advantage of any copula of the form (17) is that, due to the result in
sec. 3.1.2 that many of the standard measures of association are convex-linear on
the space of copulas, we see that these measures will be no more difficult to com-
pute for the Cube-Gaussian copula (17) than for either of its components, and
we have already shown how to compute spearman’s correlation for the cube in
sec. 2.3.2. The more advanced copulas we will introduce in Sec. 4 are also mix-
tures, and also benefit from the results in sec. 3.1.2.

Eq. (17) also lends itself well to Monte Carlo simulation, since each of the com-
ponents pc and pg is easy to simulate. Given a simulation, one can proceed to a full
portfolio-level analysis of Value-at-Risk (VaR). The simulation suffices to compute
each asset’s marginal contribution to portfolio VaR as a numerical derivative. Fig. 4
illustrates the behavior of the Cube-Gaussian mixture via a simulation histogram
with ρ = 0.3 bulk correlation, a = 0.015 and maximal tail dependence for these
parameters.

From Fig. 4 it’s intuitively clear that this copula satisfies the two desirable prop-
erties laid out in Sec. 1. In particular note that there is a large probability density
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Figure 4: Histogram of a simulation from the Cube-Gaussian mixture with ρ = 0.3
bulk correlation, a = (0.015, 0.015) and maximal tail dependence.

in the simultaneous lower left tail, but no corresponding density in the simultane-
ous upper right tail; this is typical of portfolios of financial assets, and completely
impossible to achieve with the t-Copula.

Although surely more realistic for portfolio risk modeling than either the normal
copula alone, or the t-Copula, even Eq. (17) has an important shortcoming for the
intended application. Fortunately the correction for this shortcoming is known,
and leads to interesting further mathematics. This will be the subject of the next
section; for the moment, we simply expose the indicated shortcoming.

Note that the probabilities of simultaneous tails beyond the a-th percentile die
off quickly. Suppose for illustration a Cube with a = 0.05, n= 2, and q2 = 16. This
is equivalent to assuming that the chance of a double tail is twice the chance of a
single tail. Then conditional on the first asset having a 95%-VaR event, the proba-
bility that both simultaneously have 95%-VaR events (that is, λL−0.05) is 0.8. The
corresponding probability for a Gaussian copula with ρ = 0.9 is around 0.64. How-
ever what if we consider 99%-VaR? Under the Cube, λL−0.01 falls to 0.43, while for
the Gaussian is 0.54. Given the Cube’s zero asymptotic tail dependence we know
this conditional probability converges to zero, but it does so sufficiently quickly to
cause concern in some applications, such as in cases where one wants to forecast
both 95% and 99% VaRs. The next section introduces a modeling technique, which
we call copula nesting, that allows for modeling arbitrarily many points along the
tail dependence surface with a sequence of nested Cube copulas.
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4 The Copula Nesting Theorem

In Sec. 3, we defined the Cube copula and noted that via selecting q and a appro-
priately one can precisely specify λL−a. However, the tail dependence beyond a
degrades, and asymptotes to zero. Suppose that one wants to specify tail depen-
dence at a set of quantile points A. Figure 5 illustrates the method we propose for
doing so. The key observation is that one can nest a second Cube copula within
the lower left region of an initial Cube copula. We prove below that the resulting
function remains a copula. One can repeat this nesting arbitrarily many times, and
in doing so, precisely model λL−an

for an ∈ A.

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

Figure 5: Cell complex underlying a doubly-nested Cube copula in two dimensions.
The figure illustrates a cube with a = 0.4 nested inside a cube with a = 0.2.

4.1 The Nesting Theorem and Proof

Let f be the Cube copula density on Ω = [0, 1]n with tail parameter a and values
qk on the k-tail for each k = 0, . . . , n. Let s be any copula on Ω, which we extend to
Rn by specifying that s = 0 outside Ω. Let φ : Ω→ τn,n be the bijective affine map
between the indicated regions given by rescaling each coordinate.

Consider the density
ŝ(u) = a−n s(φ−1(u)) (18)

Then by our convention ŝ vanishes outside of τn,n. Since we have multiplied by the
inverse of the Jacobian, the overall normalization is preserved:

∫
ŝ(u) du= 1.

In Theorem 3 we construct a copula f̂ which, intuitively, consists of modifying
f by replacing its values in τn,n with a scaled version of s.
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Theorem 3. The multivariate probability density defined by

f̂ (x) =

¨
qnanŝ(x), if x ∈ τn,n

f (x) otherwise

with ŝ defined as in Eq. (18), is a copula density.

Proof. The scaling is such that the integral over τn,n is unchanged. It follows that
f̂ is a probability density. We also claim that f̂ has uniform marginals. We need
to show that the marginal in the x j direction is uniform for each j = 1, . . . , n. For
notational simplicity we show this for j = n; the same proof holds in each direction.
Then we may write x = (y, xn) where y ∈ [0, 1]n−1 and xn ∈ [0, 1]. The marginal
function is then

m(xn) =

∫

[0,1]n−1

f̂ (y, xn) dy.

Note that if xn > a, then f̂ (x) = f (x) and hence m(xn) = 1 since m(xn) is a
marginal of the copula f . Therefore suppose xn ≤ a and split the integral as
follows:

∫

[0,1]n−1

f̂ (y, xn) dy =

∫

τn−1,n−1

f̂ (y, xn) dy+

∫

τn−1,n−1
c

f̂ (y, xn) dy (19)

= qnan

∫

τn−1,n−1

ŝ(y, xn) dy+

∫

τn−1,n−1
c

f (y, xn) dy (20)

Also in the region xn ≤ a one has

qnan

∫

τn−1,n−1

ŝ(y, xn) dy = qnan

∫

τn−1,n−1

ŝ(az, xn) d(az) = qnan−1

∫

[0,1]n−1

s(z, xn/a) dz

= qnan−1 =

∫

τn−1,n−1

f (y, xn) dy

since
∫
[0,1]n−1 s(z, xn/a) dz is a marginal of s.

Plugging this back into the expression (20), we see that the sum (20) collapses
into an expression for the marginal of f at xn, which we know to be 1. This
completes the proof. �
Remark 1. The same argument also shows that an arbitrary copula can be nested
within the 0-tail region τ0,n. The Cube copula is essentially the only copula that
admits a nesting theorem of this form.

If the nested copula s is itself a Cube copula, then further copulas can be nested
within the inner copula s. One can in fact do this infinitely-many times, leading
to a fractal structure, though for applications in finance or engineering one would
typically stop when the tails being modeled are so low-probability that one has no
further view on tail dependence or need to model it in those regions.
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4.2 Improving The Cube-Gaussian Mixture

The multiple-nesting property allows the practitioner to customize the copula’s tail-
dependence properties by specifying as ingredients not only the probability of an a-
quantile VaR event, but also the probabilities of the a/10-quantile, a/100-quantile,
etc.

In this way we can resolve the fundamental difficulty which plagued the simple
form of the Cube-Gaussian mixture discussed in Sec. 3.2. With nested copulas, it
need not be the case that the conditional probability of an n-tail a-quantile event,
conditioned on the occurrence of an (n− 1)-tail a-quantile event, goes to zero as
a → 0. By suitably choosing the q-vectors for the inner nested copulas, one can
ensure that these probabilities remain bounded away from zero and so that the full
copula has a non-zero tail dependence coefficient.

Suppose that in n-dimensions we have the Cube copula pc(x) with parameters
a,q and we define an inner Cube copula p̂(x) which has the same structure, but dif-
ferent parameters â, q̂ and a normalizing constant set according to eq. (21) below.
Note that there are no constraints on â, q̂ aside from the general constraints set by
Theorem 1 which apply to all Cube copulas.

As before, we set τk,n to be the k-tail region of the outer copula. We will use
τ̂k,n to denote the corresponding regions for the inner copula. Then the nested
copula is:

p(x) =

¨
p̂(x), x ∈ τn,n

pc(x) otherwise
.

The normalizing constant for p̂ is set so that
∫

τn,n

p̂(x)dnx= qnan. (21)

Suppose, as is common in financial risk modeling, we are interested in 95% and
99% VaR, and we wish to build a model with higher-than-normal probabilities of
joint tail events occurring at these quantiles. The doubly-nested Cube achieves this:
parameters a = 0.05, â = 0.2 imply

Prob(joint 95% quantile) = (0.05)2qn

Prob(joint 99% quantile) = (0.01)2q̂n .

This illustrates that the nested copula allows us to tailor the probabilities of these
events representing joint observations of extreme outliers. After mixing with the
normal, of course the necessary integrals become more difficult to do, but even
these can easily be handled numerically.
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5 Literature Review

Sklar introduced the mathematical structure of copulas into the probability and
statistics literature in 1959, coining the phrase “copula” with Schweizer in their
1983 textbook [33]. The topic received much attention in decades following its
introduction, summarized nicely by Schweizer’s “Thirty Years of Copulas” [32].
This research spawned several introductory papers and textbooks meant to intro-
duce the advanced undergraduate or graduate student to the topic, see for example
the appropriately titled “Joy of Copulas” [16], and the excellent texts by Joe [21]
and Nelsen [27]. The concept found applications within the fields of engineer-
ing and biology, but only recently have researchers applied copulas to economic
data. The earliest instances came in the insurance and operations research liter-
ature insurance during the mid 1990s. Frees et all [12] in the Journal of Risk
and Insurance consider the problem of pricing an annuity promised on two lives,
and apply Frank’s copula [11], a special case of the Archimedean family of cop-
ulas. Jouini and Clemen [22] investigate aggregating expert opinions, also with
Frank’s copula. The first mention of copulas within Management Science arrives
in [37], who study accident “precursors” or “near-misses”, where the joint distri-
bution modeled is that of the failure probability of some safety system under two
states of the world depending on whether some other safety system has or has not
failed. The first appearance of copulas in an economics journal is also via an inves-
tigation into an insurance problem, in the context of a principal agent problem with
adverse selection [23]. Overall, the use of copulas in the economics literature has
been sparse and very recent. The journals of the American Economic Association
record four articles mentioning copulas, all between 2007 and present; Economet-
rica records three mentions, all published in 2010; the Journal of Political Economy
records one mention [19]; while the Quarterly Journal of Economics records none.

The use of copulas in the financial literature was also recent, but has grown
explosively in the last ten years. In their widely circulated 1999 working paper,
Embrechts, McNeil, and Strauman [10] introduce copulas into modeling financial
asset returns. They focus on correcting what they perceive as commonly held views
on correlations that “arise from the naive assumption that dependence properties
of the elliptical world also hold in the non-elliptical world” and they propose cop-
ulas and rank correlations as a remedy. With this background, it is perhaps not
surprising that the highly non-elliptical world of credit derivatives emerged as fer-
tile ground for copulas. Li [24] was the earliest published instance, although he
cites technical documents from the industry that predate his research (although
not explicitly using the copula terminology).2 Soon after Li’s article, examples of
copulas in credit modeling rapidly proliferated; key references are [13] and [31],
both of which unify Li’s approach with the latent variable approach of older in-
dustry research (KMV and CreditMetrics). Bouye et al [6] provide a reading guide
that both introduces the mathematics of copulas and illustrates with applications to

2Li’s use of the Gaussian copula was pilloried in an article in Wired magazine dubbed “Recipe for
Disaster: The Formula That Killed Wall Street”, [30].
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credit scoring, asset returns, and risk measurement. Longin and Solnik [26] pro-
vide the first published example of copulas used in modeling returns from different
equity markets, as well as the first mention of copulas in a top finance journal.
They use Gumbel’s copula [18], although interestingly they neither cite the sem-
inal statistical references nor use the phrase “copula” in their paper. Other highly
regarded finance journals follow suit: [7] in the Journal of Financial and Quantita-
tive Analysis; [5] in the Journal of Business; [28] in the Review of Financial Studies.
Interestingly, the earliest mention of copulas in the Journal of Financial Economics
is in a footnote to [4], which states that “Embrechts et al. (1999) have recently
advocated the use of copulas and rank statistics when measuring dependence in
non-normally distributed financial data. However, because the unconditional dis-
tributions that we explore . . . are all approximately Gaussian, the linear cor-
relation affords the most natural measure in the present context.” Unfortunately,
the evidence presented that the financial data they study are normal concerns only
the marginal distributions, and not the joint distribution, which is what is relevant
for determining whether to use copulas. Finally, several textbooks provide very
thorough introductions to copulas in finance, namely [8] and [36].

One interesting application comes from Rosenberg and Schuermann [29].
They attempt to model the various risks that a complicated financial institution
faces (market, credit, and operational) via flexible modeling of marginal distribu-
tions each of which is allowed to have a very different shape. The authors conclude
that the VaRs of the individual components and the weights that aggregate these
components into a portfolio play a larger role in determining portfolio VaR than the
choice of the copula. However, the authors consider only Gaussian and Student’s-t
copulas, which we suspect drives this conclusion.

In general, many of the existing financial applications in the literature seem
to view the primary benefit of copulas as simply allowing for arbitrary marginals,
without much attention given to the implications of the copula for modeling tail de-
pendence. The emphasis, then, becomes sophisticated modeling of the marginals,
with the copula chosen as an afterthought. Rosenberg and Schuermann clearly
fits in this category, as do most of the early credit modeling references provided
above. A notable exception, and the approach most similar to ours, is Hu’s [20],
which estimates mixtures of Gaussian, Gumbel, and Gumbel survival copulas using
monthly returns from the S&P 500, FTSE 100, Nikkei 225, and Hang Seng. Like
our application below, Hu estimates marginals non-parameterically, focusing on the
dependence structure rather than the marginals.
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6 An Application to Hedge Fund Returns

6.1 Data

Hedge fund returns provide a natural setting to apply our copula mixture. We think
of multivariate hedge fund return distributions as operating under two regimes. In
normal times, hedge funds strategies operate with whatever correlations arise natu-
rally from their common exposures to risk factors and correlated trading strategies.
However, during stress scenarios, strategies correlate to a much higher degree, as
industry-wide balance sheet reductions beget negative returns via market impact,
which beget further balance sheet reductions. The causes of these correlated port-
folio liquidations can be acute, such as when sudden losses by a large fund become
common knowledge (eg Long Term Capital Management in 1998), or more dif-
fuse, such as a contraction in banks’ willingness to finance transactions or elevated
redemption requests by investors (which are two commonly-cited causes of large
hedge fund losses in the fall of 2008). Regardless of cause, the presence of simulta-
neous deleveragings creates a left tail dependency that can be much more extreme
that what one would expect from observing returns during normal times.

To illustrate, we use the Hedge Fund Research indexes (HFRI), which HFR de-
scribes as “a series of benchmarks designed to reflect hedge fund industry per-
formance by constructing equally weighted composites of constituent funds, as
reported by the hedge fund managers listed within HFR Database.” While HFRI
returns suffer some serious biases in their construction3, they are generally con-
sidered the industry standard and have been used in many of the seminal stud-
ies of hedge fund returns (Ackerman, McEnally, and Ravenscraft [1]; Liang [25];
Agarwal and Naik [2], [3]; Getmansky, Lo, Makarov [17]; Fung and Hsieh [14]).
Specifically, we investigate the joint distribution of the Event Driven (ED) and Rel-
ative Value (RV) strategy indexes.4

Our data consist of the monthly returns for Event Driven and Relative Value
from February 1990 through August 2010, measured in excess of the US 3-month
Treasury bill rate. The cumulative returns are shown in Fig. 6, and the scatterplots
in Fig. 7. The excess returns are highly correlated, with a ρS of 0.67 over the full
sample, despite strategy descriptions that would not suggest such high correlations.

Much of this correlation is due to persistent exposure to common risk factors.
We attempted to control for these exposures by OLS regression of each strategy
against the excess total returns of several market indexes:

3Most seriously, returns are self-reported and funds are free to self-censor.
4Event Driven includes as sub-categories: Activist, Credit Arbitrage, Distressed/Restructuring,

Merger Arbitrage, Private Issue/Regulation D, Special Situations, and Multistrategy. Relative Value
includes as sub-categories: Fixed Income-Asset Backed, Fixed Income-Convertible Arbitrage, Fixed
Income-Corporate, Fixed Income-Sovereign, Volatility, Yield Alternatives:Energy Infrastructure, Alter-
natives:Real Estate, and Multistrategy.
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(a) S&P 500,

(b) Barclays Capital Aggregate Total Treasury,

(c) Barclays Capital US Corporate High Yield, and

(d) S&P Goldman Sachs Commodity.

For each HFR index, all four market indexes (a)–(d) had t-statistics above 2 (with
average absolute t-statistics of 6.0 for ED and 4.8 for ED), and adjusted R2 were
65% for ED and 52% for RV. The Spearman correlation of the residuals to these
factors drops to 0.49, but clearly, left-tail correlation remains present even in the
residualized data.

1990 1995 2000 2005 2010

0.0
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1.0

1.5

Cumulative Log Return

Residual HFRI Relative Value

Residual HFRI Event-Driven

Excess HFRI Relative Value

Excess HFRI Event-Driven

Figure 6: Cumulative Excess Log Returns and Residual Log Returns for HFRI Event
Driven and Relative Value Indexes, Monthly from Jan 1990–Aug 2010.

6.2 Methodology

We estimate the parameters of our Cube-Gaussian Mixture copula, described in Sec-
tion 3.2, via a two-step, pseudo-maximum likelihood estimation procedure. First,
we estimate marginals via the empirical CDF, and apply an inverse empirical CDF
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Figure 7: Cumulative Monthly Excess and Residual Log Returns for HFRI Event
Driven (horizontal) and Relative Value (vertical) Indexes, Jan 1990-Aug 2010.

to each variable to transform it into a uniform. In the second step, we estimate the
parameters of the copula on these transformed data via maximum likelihood. Al-
ternatively, we could estimate a full information maximum likelihood by specifying
marginals, and then maximizing a joint likelihood function that is both a function
of the parameters of the marginals and the parameters of the copula. The bene-
fit of using the two-step procedure and non-parametrically estimating marginals is
that if parametric marginals are mis-specified and included in a joint likelihood,
they will interfere with the copula estimates, which are our focus. Note that the
standard errors that arise from this two-step procedure are larger than those that
would be naively computed by assuming that the transformed data were the actual
data. Intuitively, the inverse empirical CDF does not equal the true inverse CDF,
and this source of estimation error much be accounted for in the copula’s param-
eter estimates. The corrected standard errors come via a “sandwich estimator” of
the asymptotic covariance matrix; [15] provide a derivation.

We chose to use a single breakpoint a, fixed in advance, which defines double-
tail region in the Cube, and we estimated the following three parameters: q2, which
determines the likelihood of the double-tail,5 λ, the mixing parameter, and ρ, the
correlation of the Gaussian copula. Provided that a is chosen not to coincide with
one of the values of the sample, the likelihood function is differentiable in each
parameter, and the maximization was easily solved via Matlab’s fmincon function.6

5Note from Section 2.2 that q1 and q0 are simple functions of q2.
6In preliminary research, we also experimented with estimating a, but this proved difficult. The

typical solution to this problem involves an a that coincides exactly with a sample value, which creates
a non-differentiability at the maximum likelihood estimate. In fact, not only is the likelihood function
not differentiable in a at such a point, it is not differentiable in q2 either. This resulted in instability in
our numerical routines.
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We estimated with a equal to 0.01 and 0.05, representing 95% and 99% VaR, two
commonly used breakpoints in financial risk modeling. Neither 0.01 nor 0.05 was
exactly equal to an observation of our sample after it had been mapped to uniform
via the inverse empirical CDF, since our sample contained 247 observations.7

We also evaluated the fit of the Mixture copula against three competing copulas:
pure Gaussian, Student’s-t, and Clayton. We estimated the parameters of each of
these three copulas via maximum likelihood: ρ for the Gaussian, ν and ρ for the
Student’s-t, and θ for the Clayton. We evaluate each copula’s fit via the value of the
log-likelihood and two information criteria that penalize for over-fitting: Akaike’s
Information Criterion (AIC) and the Bayesian Information Criterion (BIC).

Note that our sample consists of 247 monthly observations. With a sample this
size, estimating the 95% and 99% VaRs is imprecise. To see this, note that one
can compute a confidence interval for a quantile using the sample order statistics
via the binomial distribution. Letting X( j) denote the jth largest of a collection of
n iid continuously distributed random variables, and qα the α-quantile, we have
P(X( j) < qα < X( j+1)) =

�n
j

�
α j(1 − α) j−1. Starting from the sample α-quantile,

one can expand to successively larger intervals with order statistics as endpoints to
obtain confidence intervals with increasing rates of coverage. See Stark [35] for
details. In particular, with a sample of 247 observations, a 95% confidence inter-
val for q0.05 centered at the sample 0.05-quantile is contained within [x(6), x(19)],
that is, the sample 2.4%-ile to the sample 7.7%-ile. A 95% confidence intervals
for q0.01 is contained within [−∞, x(5)], that is, from −∞ to the sample 2%-ile.
If one prefers confidence intervals of finite length, a 90% confidence intervals for
q0.01 is contained within [x(1), x(6)]; however there is no interval between the min-
imum sample observation and maximum sample observation that contains a 95%
confidence interval for q0.01.

However, we don’t view this as an impediment to estimating the Cube copula on
a dataset of this size. The Cube copula is concerned with the dependence between
extreme observations, but not with the specific shape of the tails of a particular
marginal distribution. To see this another way, note that our maximum likelihood
procedure transforms the data into ranks before the Cube even sees them, so that
taking the most extreme observation and scaling it by a factor of 10 along one
dimension would have no impact on the Cube’s estimates. What is a problem
however, is that with a small number of observations, one may not observe extreme
dependence. Thus estimating the Cube requires confidence that one has indeed
observed extreme dependence within a sample. The uneasiness one should feel
making statements about having already observed extreme dependence suggests
that in any financial application (and perhaps any application more generally),
stress-testing the Cube’s parameters (for example for their impact on forecast VaR
or contribution to VaR) is critical.

7Had we instead had 100 observations, so that 0.01 and 0.05 would have been elements of our
U(0,1) transformed sample, we could have chosen for example an a of 0.011 and 0.051 to avoid nu-
merical difficulties. However, choosing 0.011 rather than 0.009 could have a sizable impact on the
estimates of the other parameters.
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6.3 Results

First we report the results of the OLS regression of the HFR indexes on the market
indexes:

HFRI HFRI
Event Driven Relative Value

Intercept 0.005377 0.004426
(0.000762) (0.000592)

S&P 500 0.1857 0.0426
(0.0209) (0.0162)

BarCap Agg Total Treasury -0.1728 -0.0920
(0.0561) (0.0436)

BarCap US Corp High Yield 0.3172 0.2549
(0.0332) (0.0258)

S&P GS Commodity 0.0301 0.04336
(0.0121) (0.0094)

n 247 247
R2 0.655 0.523
Adj-R2 0.650 0.515

Standard errors in parentheses

Next we report the estimated parameters of the Cube-Gaussian Mixture, both
for excess and residualized HFRI returns:
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a = 0.05 a = 0.01
HFRI Excess Returns HFRI Residual Returns HFRI Excess Returns HFRI Residual Returns

q2 15.45 5.87 100.0 100.0
(37.05) (5.01) (198.1) (149.5)

λ 0.047 0.393 0.130 0.394
(0.097) (0.103) (0.090) (0.101)

ρS 0.726 0.751 0.768 0.758
(0.046) (0.039) (0.037) (0.039)

-log L -82.22 -37.09 -83.07 -38.52

Approximate standard errors in parentheses

Note that with a = 0.01, the corner solution of q2 = a−1 maximizes the likeli-
hood, and at that estimate the derivative of the likelihood function is undefined,
so the approximate standard error is not valid. Given that only 2 observations per
variable lie below the 0.01 percentile, we should expect the estimator to be some-
what unstable. The fact that the most extreme observation for HFRI ED residual
returns coincides precisely with the most extreme observation for HFRI RV’s resid-
ual returns 8 means that fitting this highly unlikely (from the perspective of the
Gaussian) point perfectly brings a large likelihood gain. This instability would pre-
vent most practitioners from taking the a = 0.01 estimates very seriously, and so
we have included them solely to illustrate the mechanics of the model.

Finally, we report the values of the likelihood, AIC, and BIC evaluated at the
maximum likelihood estimates for the Cube-Gaussian (at a = 0.05 and a = 0.01),
Gaussian, Clayton, and Student’s-t copulas:

8These occurred during the LTCM crisis of August 1998. The most extreme HFRI ED excess return,
also August 1998, occurred with HFRI RV’s 2nd most extreme excess return, and vice versa during
October 2008.
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HFRI Excess Returns HFRI Residual Returns

-log L

Cube-Gaussian (a = 0.05) -82.22 -37.09
Cube-Gaussian (a = 0.01) -83.07 -38.52
Gaussian -82.09 -33.43
Clayton -78.61 -33.42
Student’s-t -83.92 -36.11

AIC

Cube-Gaussian (a = 0.05) -158.45 -68.19
Cube-Gaussian (a = 0.01) -160.13 -71.04
Gaussian -162.18 -64.87
Clayton -155.21 -64.83
Student’s-t -163.84 -68.22

BIC

Cube-Gaussian (a = 0.05) -147.92 -57.66
Cube-Gaussian (a = 0.01) -149.60 -60.51
Gaussian -158.67 -61.36
Clayton -151.70 -61.33
Student’s-t -156.82 -61.20

Cube-Gaussian estimates 3 parameters; Gaussian, 1; Clayton, 1; and Student’s-t, 2

On the HFRI Excess returns, Student’s-t performs best in terms of the log-
likelihood and AIC, but the heavier penalty that BIC enacts on extra estimated
parameters causes the pure Gaussian to fit the best of the five models. The Cube-
Gaussians both outperform the Clayton on AIC, but are last on BIC due to their
extra parameter.

On the HFRI Residual returns, the Cube-Gaussians perform better. BIC still
penalizes them sufficiently heavily that they are last, but both are considerably
better than the three competing models under AIC’s penalty. In terms of intuition
for the very different ranking achieved by AIC and BIC, note that AIC’s penalty term
is a function solely of the number of parameters, namely 2k where k is the number
of estimated parameters, while BIC’s penalty term grows with the sample size, via
klog(n) where n is the sample size.

Our view of these results is that they at minimum establish that parameter
estimation is straightforward for the simplest version of the mixed Cube copula,
and that it produces results about as good as common alternative approaches to
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modeling tail dependence. However, we also view the Cube-Gaussian as a modeling
tool, rather than just a statistical tool, in the sense that its parameters will generally
require both intuition and experience in the arena in which the tool is applied. To
make this point obvious, the practitioner who put no thought into the liquidation
scenarios that could lead to simultaneous left tails across hedge fund strategies, but
instead blindly applied our method, would not have been much better off going into
August 1998 than a practitioner who instead used a Gaussian copula.

7 Conclusions

Motivated by applications to portfolio risk modeling, we searched for a copula
which is flexible enough to accommodate a fully-general correlation matrix in the
bulk, as well as a very high conditional probability of left-tail events, with no cor-
responding implication for right-tail events. Our conclusion was that none of the
well-known copulas in the literature are quite so flexible. All of these seem to have
the property that one can introduce high left tail dependence, but only at the cost
of influencing the copula in other ways which make it inadmissible for this sort of
risk modeling.

To address this problem, we created a new family of copulas which is more
“flexible” in several important ways. It allows one in particular to separately specify
the probabilities for a-quantile events, for a sequence of increasing values of a,
while retaining a fixed correlation structure in the bulk and without requiring the
introduction of artificial right-tail dependence.

The new copula we propose takes the form of a nested Cube mixed with a
normal copula. The normal copula takes into account the correlation matrix, while
the nesting and the cube structure creates a sequence of increasing probabilities
of simultaneity in the left tails. The parameter vector q can be tuned to make
these conditional probabilities as large as mathematically possible. Since the qi ’s
are subject only to simple linear constraints, it is not difficult to tune the q-vector
while maintaining consistency.

Theorem 1 and Theorem 3 ensure that the resulting mixtures are indeed copu-
las. This structure has several desirable properties, including the fact that certain
important and widely-used measures of concordance, such as Spearman’s rho, dis-
tribute over mixtures and can be computed explicitly for the components.

Applications in financial engineering include a better estimation of VaR and
contributions to VaR for portfolios of assets which have moderate correlation in
normal times, but which tend to experience highly correlated drawdowns in crisis
periods.
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