MATH 221, Fall 2016 - Homework 5 Solutions

Due Tuesday, October 11

Section 2.1

Page 100, Problem 3:

To begin,
$$I_2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$
. $3I_2 - A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} - \begin{bmatrix} 2 & -5 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 1 & 5 \\ -3 & 5 \end{bmatrix}$ and
 $(3I_2)A = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} \begin{bmatrix} 2 & -5 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 6 & -15 \\ 9 & -6 \end{bmatrix}$

Page 100, Problem 5:

a.
$$A\mathbf{b}_{1} = \begin{bmatrix} -1 & 3\\ 2 & 4\\ 5 & -3 \end{bmatrix} \begin{bmatrix} 4\\ -2 \end{bmatrix} = \begin{bmatrix} -10\\ 0\\ 26 \end{bmatrix} A\mathbf{b}_{2} = \begin{bmatrix} -1 & 3\\ 2 & 4\\ 5 & -3 \end{bmatrix} \begin{bmatrix} -2\\ 3 \end{bmatrix} = \begin{bmatrix} 11\\ 8\\ -19 \end{bmatrix}$$
 So, $AB = \begin{bmatrix} -10 & 11\\ 0 & 8\\ 26 & -19 \end{bmatrix}$
b. $AB = \begin{bmatrix} -1 & 3\\ 2 & 4\\ 5 & -3 \end{bmatrix} \begin{bmatrix} 4 & -2\\ -2 & 3 \end{bmatrix} = \begin{bmatrix} -1(4) + 3(-2) & -1(-2) + 3(3)\\ 2(4) + 4(-2) & 2(-2) + 4(3)\\ 5(4) + -3(-2) & 5(-2) + -3(3) \end{bmatrix} = \begin{bmatrix} -10 & 11\\ 0 & 8\\ 26 & -19 \end{bmatrix}$

Page 100, Problem 6:

a.
$$A\mathbf{b}_{1} = \begin{bmatrix} 4 & -3 \\ -3 & 5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 3 \end{bmatrix} = \begin{bmatrix} -5 \\ 12 \\ 3 \end{bmatrix} A\mathbf{b}_{2} = \begin{bmatrix} 4 & -3 \\ -3 & 5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ -2 \end{bmatrix} = \begin{bmatrix} 22 \\ -22 \\ -2 \end{bmatrix}$$
 So, $AB = \begin{bmatrix} -5 & 22 \\ 12 & -22 \\ 3 & -2 \end{bmatrix}$
b. $AB = \begin{bmatrix} 4 & -3 \\ -3 & 5 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 4 \\ 3 & -2 \end{bmatrix} = \begin{bmatrix} 4(1) + -3(3) & 4(4) + -3(-2) \\ -3(1) + 5(3) & -3(4) + 5(-2) \\ 0(1) + 1(3) & 0(4) + 1(-2) \end{bmatrix} = \begin{bmatrix} -5 & 22 \\ 12 & -22 \\ 3 & -2 \end{bmatrix}$

Page 100, Problem 12:

Because A is 2x2 and B is 2x2, our new matrix of all zeros will also be 2x2. Essentially, we want to solve

 $\begin{bmatrix} 3 & -6 \\ -2 & 4 \end{bmatrix} \begin{bmatrix} a & b \\ c & d \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \text{ with non-zero columns. Multiplying these matrices results in a linear system:}$ $\begin{array}{l} 3a - 6c = 0 \\ 3b - 6d = 0 \\ -2a + 4c = 0 \\ -2b + 4d = 0 \end{array}, \text{ which can be broken into two separate systems:} \quad \begin{array}{l} 3a - 6c = 0 \\ -2a + 4c = 0 \\ -2a + 4c = 0 \end{array} \text{ and } \begin{array}{l} 3b - 6d = 0 \\ -2b + 4d = 0 \end{array}.$ Using row reduction, $\begin{bmatrix} 3 & -6 & 0 \\ -2 & 4 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -2 & 0 \\ 0 & 0 & 0 \end{bmatrix} \text{ so } a = 2c \text{ and } b = 2d. \text{ Answers will vary.}$ An example is c = 1, d = 1 so a = b = 2: $\begin{bmatrix} 2 & 2 \\ 1 & 1 \end{bmatrix}.$ Remember, $I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$. Let $D = \begin{bmatrix} \mathbf{d}_1 & \mathbf{d}_2 & \mathbf{d}_3 \end{bmatrix}$. By definition of matrix multiplication, the columns of AD

are equivalent to $A\mathbf{d}_1$, $A\mathbf{d}_2$, and $A\mathbf{d}_3$, respectively. In order for $AD = I_3$, the systems generated by $A\mathbf{d}_1$, $A\mathbf{d}_2$, and $A\mathbf{d}_3$ must each have at least one solution. Since the columns of A span \mathbb{R}^3 , each of theses systems do have at least one solution (see Theorem 4 in Section 1.4). So, the matrix D is found by selecting one of the solutions from each of the systems $(A\mathbf{d}_1, A\mathbf{d}_2, \text{ and } A\mathbf{d}_3)$ and using it as the columns of D.

Page 101, Problem 26:

Let $\mathbf{b} \in \mathbb{R}^{m}$ be arbitrary (**b** is an m x 1 matrix or vector). Assume $AD = I_{m}$ is true. Then, multiplying by **b** yields $AD\mathbf{b} = I_{m}\mathbf{b}$, which implies $AD\mathbf{b} = \mathbf{b}$ (because I_{m} is essentially 1). Because the order of the matrices is defined, $A(D\mathbf{b}) = \mathbf{b}$ (by Theorem 2 of this section on page 97). The product $D\mathbf{b}$ is a vector which can be written as $\mathbf{x} = D\mathbf{b}$. So, $A\mathbf{x} = \mathbf{b}$ is true for every **b** in \mathbb{R}^{m} . By Theorem 4 in Section 1.4, since $A\mathbf{x} = \mathbf{b}$ is true for every **b** in \mathbb{R}^{m} , A has a pivot position in every row. Because each pivot is in a different column, A must have at least as many columns as rows. Page 101, Problem 33:

Let A be an arbitrary matrix of order i x j:
$$A = \begin{bmatrix} a_{11} & \dots & a_{1j} \\ \vdots & \dots & \vdots \\ a_{i1} & \cdots & a_{ij} \end{bmatrix}$$
 and B of order j x k : $B = \begin{bmatrix} b_{11} & \dots & b_{1k} \\ \vdots & \dots & \vdots \\ b_{j1} & \cdots & b_{jk} \end{bmatrix}$.

The product AB is defined because the number of columns of A (j) equals the number of rows of B (j).

The product is:
$$AB = \begin{bmatrix} a_{11}b_{11} + \ldots + a_{1j}b_{j1} & \cdots & a_{11}b_{1k} + \ldots + a_{1j}b_{jk} \\ \vdots & \ldots & \vdots \\ a_{i1}b_{11} + \ldots + a_{ij}b_{j1} & \cdots & a_{i1}b_{1k} + \ldots + a_{ij}b_{jk} \end{bmatrix}$$
which is a matrix of order i x k.
It follows that $(AB)^{T} = \begin{bmatrix} a_{11}b_{11} + \ldots + a_{1j}b_{j1} & \cdots & a_{i1}b_{11} + \ldots + a_{ij}b_{j1} \\ \vdots & \ldots & \vdots \\ a_{11}b_{1k} + \ldots + a_{1j}b_{jk} & \cdots & a_{i1}b_{1k} + \ldots + a_{ij}b_{jk} \end{bmatrix}$, which is a matrix of order k x i.

$$B^{T} = \begin{bmatrix} b_{11} & \ldots & b_{j1} \\ \vdots & \ldots & \vdots \\ b_{1k} & \cdots & b_{jk} \end{bmatrix}$$
, which is of order k x j, and $A^{T} = \begin{bmatrix} a_{11} & \ldots & a_{i1} \\ \vdots & \ldots & \vdots \\ a_{1j} & \cdots & a_{ij} \end{bmatrix}$, which is of order j x i.
The product $B^{T}A^{T}$ is:
$$\begin{bmatrix} b_{11}a_{11} + \ldots + b_{j1}a_{1j} & \ldots & b_{11}a_{i1} + \ldots + b_{j1}a_{ij} \\ \vdots & \ldots & \vdots \\ b_{1k}a_{11} + \ldots + b_{jk}a_{1j} & \cdots & b_{1k}a_{i1} + \ldots + b_{jk}a_{ij} \end{bmatrix}$$
, which is a matrix of order k x i.

Looking at $(AB)^T$ and $B^T A^T$, it is clear that the matrices are equivalent.

Section 2.2

Page 109, Problem 4:

$$A = \begin{bmatrix} 2 & -4 \\ 4 & -6 \end{bmatrix} A^{-1} = \frac{1}{-12+16} \begin{bmatrix} -6 & 4 \\ -4 & 2 \end{bmatrix} = \frac{1}{4} \begin{bmatrix} -6 & 4 \\ -4 & 2 \end{bmatrix} = \begin{bmatrix} -\frac{3}{2} & 1 \\ -1 & \frac{1}{2} \end{bmatrix}$$

Page 109, Problem 9a:

True or False: In order for a matrix B to be the inverse of A, the equations AB = I and BA = I must both be true.

TRUE - This is the definition of invertible on page 103.

Page 109, Problem 9b:

True or False: If A and B are n x n and invertible, then $A^{-1}B^{-1}$ is the inverse of AB.

FALSE - By Theorem 6 on page 105, $(AB)^{-1} = B^{-1}A^{-1}$, which does not always equal $A^{-1}B^{-1}$.

Page 109, Problem 9c:

True or False: If $A = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ and $ab - cd \neq 0$, then A is invertible.

FALSE - By Theorem 4 of this section, a 2 x 2 matrix is invertible if and only if $ad - bc \neq 0$.

The expression ab - cd reveals nothing about the invertibility of a matrix.

For example, $\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix} \Rightarrow ab - cd = 1 - 0 \neq 0$, but the matrix is not invertible because ad - bc = 0.

Page 109, Problem 9d:

True or False: If A is an invertible n x n matrix, then the equation $A\mathbf{x} = \mathbf{b}$ is consistent for each \mathbf{b} in \mathbb{R}^n .

TRUE - This follows from Theorem 5 of this section on page 104.

Page 110, Problem 14:

Because (B - C) is an m x n matrix, D must be an n x n matrix (because the product (B - C)D is defined and D is invertible). Thus, 0 is an m x n matrix. Beacuse D is invertible,

 $(B-C)DD^{-1} = 0 \cdot D^{-1} \Rightarrow (B-C)I_n = 0$, where 0 is still an m x n matrix because D^{-1} is still n x n.

Thus, B - C = 0 because I_n is essentially 1. Thus, $B - C + C = 0 + C \Rightarrow B + (-C + C) = 0 + C \Rightarrow B = C$. Page 110, Problem 16:

Because A and B are both n x n matrices, their products and inverses (if they exist) are also n x n.

Using the hint, let C = AB and solve for A: $CB^{-1} = ABB^{-1} \Rightarrow CB^{-1} = A$, but C = AB.

Therefore, A is the product of invertible matrices. By Theorem 6 of this section, A must also be invertible.

Page 110, Problem 18:

Because the order of all matrices is n x n, their products and inverses (if they exist) are also n x n.

Because B is invertible, $ABB^{-1} = BCB^{-1} \Rightarrow AI_n = BCB^{-1} \Rightarrow A = BCB^{-1}$.

Page 110, Problem 31:

To find the inverse, use the algorithm on page 108:

$$\begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ -3 & 1 & 4 & 0 & 1 & 0 \\ 2 & -3 & 4 & 0 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & -3 & 8 & -2 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & -2 & 1 & 0 & 0 \\ 0 & 1 & -2 & 3 & 1 & 0 \\ 0 & 0 & 2 & 7 & 3 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 8 & 3 & 1 \\ 0 & 1 & 0 & 10 & 4 & 1 \\ 0 & 0 & 1 & \frac{7}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}$$

So, the inverse is
$$\begin{bmatrix} 8 & 3 & 1 \\ 10 & 4 & 1 \\ \frac{7}{2} & \frac{3}{2} & \frac{1}{2} \end{bmatrix}.$$