
MATH 221, Fall 2016 - Homework 5 Solutions

Due Tuesday, October 11

Section 2.1

Page 100, Problem 3:

To begin, I2 =


1 0

0 1

�
. 3I2 �A =


3 0

0 3

�
�


2 �5

3 �2

�
=


1 5

�3 5

�
and

(3I2)A =


3 0

0 3

� 
2 �5

3 �2

�
=


6 �15

9 �6

�

Page 100, Problem 5:

a. Ab1 =

2

4
�1 3

2 4

5 �3

3

5


4

�2

�
=

2

4
�10

0

26

3

5 Ab2 =

2

4
�1 3

2 4

5 �3

3

5


�2

3

�
=

2

4
11

8

�19

3

5
So, AB =

2

4
�10 11

0 8

26 �19

3

5

b. AB =

2

4
�1 3

2 4

5 �3

3

5


4 �2

�2 3

�
=

2

4
�1(4) + 3(�2) �1(�2) + 3(3)

2(4) + 4(�2) 2(�2) + 4(3)

5(4) +�3(�2) 5(�2) +�3(3)

3

5
=

2

4
�10 11

0 8

26 �19

3

5

Page 100, Problem 6:

a. Ab1 =

2

4
4 �3

�3 5

0 1

3

5


1

3

�
=

2

4
�5

12

3

3

5 Ab2 =

2

4
4 �3

�3 5

0 1

3

5


4

�2

�
=

2

4
22

�22

�2

3

5
So, AB =

2

4
�5 22

12 �22

3 �2

3

5

b. AB =

2

4
4 �3

�3 5

0 1

3

5


1 4

3 �2

�
=

2

4
4(1) +�3(3) 4(4) +�3(�2)

�3(1) + 5(3) �3(4) + 5(�2)

0(1) + 1(3) 0(4) + 1(�2)

3

5
=

2

4
�5 22

12 �22

3 �2

3

5

Page 100, Problem 12:

Because A is 2x2 and B is 2x2, our new matrix of all zeros will also be 2x2. Essentially, we want to solve


3 �6

�2 4

� 
a b
c d

�
=


0 0

0 0

�
with non-zero columns. Multiplying these matrices results in a linear system:

3a� 6c = 0

3b� 6d = 0

�2a+ 4c = 0

�2b+ 4d = 0

, which can be broken into two separate systems:

3a� 6c = 0

�2a+ 4c = 0

and

3b� 6d = 0

�2b+ 4d = 0

.

Using row reduction,


3 �6 0

�2 4 0

�
!


1 �2 0

0 0 0

�
so a = 2c and b = 2d. Answers will vary.

An example is c = 1, d = 1 so a = b = 2:


2 2

1 1

�
.

1



Page 101, Problem 24:

Remember, I3 =

2

4
1 0 0

0 1 0

0 0 1

3

5
. Let D =

⇥
d1 d2 d3

⇤
. By definition of matrix multiplication, the columns of AD

are equivalent to Ad1, Ad2, and Ad3, respectively. In order for AD = I3, the systems generated by Ad1, Ad2, and Ad3

must each have at least one solution. Since the columns of A span R3
, each of theses systems do have at least one solution

(see Theorem 4 in Section 1.4). So, the matrix D is found by selecting one of the solutions from each of the systems

(Ad1, Ad2, and Ad3) and using it as the columns of D.

Page 101, Problem 26:

Let b 2 Rm
be arbitrary (b is an m x 1 matrix or vector). Assume AD = Im is true. Then, multiplying by b yields

ADb = Imb, which implies ADb = b (because Imis essentially 1). Because the order of the matrices is defined,

A(Db) = b (by Theorem 2 of this section on page 97). The product Db is a vector which can be written as x = Db.

So, Ax = b is true for every b in Rm
. By Theorem 4 in Section 1.4, since Ax = b is true for every b in Rm

, A has a

pivot position in every row. Because each pivot is in a di↵erent column, A must have at least as many columns as rows.

Page 101, Problem 33:

Let A be an arbitrary matrix of order i x j: A =

2

64
a11 . . . a1j
.

.

. · · ·
.

.

.

ai1 · · · aij

3

75 and B of order j x k : B =

2

64
b11 . . . b1k
.

.

. · · ·
.

.

.

bj1 · · · bjk

3

75 .

The product AB is defined because the number of columns of A (j) equals the number of rows of B (j).

The product is: AB =

2

64
a11b11 + . . .+ a1jbj1 · · · a11b1k + . . .+ a1jbjk

.

.

. · · ·
.

.

.

ai1b11 + ...+ aijbj1 · · · ai1b1k + . . .+ aijbjk

3

75 which is a matrix of order i x k.

It follows that (AB)

T
=

2

64
a11b11 + . . .+ a1jbj1 · · · ai1b11 + ...+ aijbj1

.

.

. · · ·
.

.

.

a11b1k + . . .+ a1jbjk · · · ai1b1k + . . .+ aijbjk

3

75, which is a matrix of order k x i.

BT
=

2

64
b11 . . . bj1
.

.

. · · ·
.

.

.

b1k · · · bjk

3

75 , which is of order k x j, and AT
=

2

64
a11 . . . ai1
.

.

. · · ·
.

.

.

a1j · · · aij

3

75 , which is of order j x i.

The product BTAT
is:

2

64
b11a11 + . . .+ bj1a1j . . . b11ai1 + . . .+ bj1aij

.

.

. · · ·
.

.

.

b1ka11 + . . .+ bjka1j · · · b1kai1 + . . .+ bjkaij

3

75, which is a matrix of order k x i.

Looking at (AB)

T
and BTAT

, it is clear that the matrices are equivalent.

2



Section 2.2

Page 109, Problem 4:

A =


2 �4

4 �6

�
A�1

=

1
�12+16


�6 4

�4 2

�
=

1
4


�6 4

�4 2

�
=


� 3

2 1

�1

1
2

�

Page 109, Problem 9a:

True or False: In order for a matrix B to be the inverse of A, the equations AB = I and BA = I must both be true.

TRUE - This is the definition of invertible on page 103.

Page 109, Problem 9b:

True or False: If A and B are n x n and invertible, then A�1B�1
is the inverse of AB.

FALSE - By Theorem 6 on page 105, (AB)

�1
= B�1A�1

, which does not always equal A�1B�1
.

Page 109, Problem 9c:

True or False: If A =


a b
c d

�
and ab� cd 6= 0, then A is invertible.

FALSE - By Theorem 4 of this section, a 2 x 2 matrix is invertible if and only if ad� bc 6= 0.

The expression ab� cd reveals nothing about the invertibility of a matrix.

For example,


1 1

0 0

�
) ab� cd = 1� 0 6= 0, but the matrix is not invertible because ad� bc = 0.

Page 109, Problem 9d:

True or False: If A is an invertible n x n matrix, then the equation Ax = b is consistent for each b in Rn
.

TRUE - This follows from Theorem 5 of this section on page 104.

Page 110, Problem 14:

Because (B � C) is an m x n matrix, D must be an n x n matrix (because the product (B � C)D is defined

and D is invertible). Thus, 0 is an m x n matrix. Beacuse D is invertible,

(B � C)DD�1
= 0 ·D�1 ) (B � C)In = 0, where 0 is still an m x n matrix because D�1

is still n x n.

Thus, B � C = 0 because In is essentially 1. Thus, B � C + C = 0 + C ) B + (�C + C) = 0 + C ) B = C.

Page 110, Problem 16:

Because A and B are both n x n matrices, their products and inverses (if they exist) are also n x n.

Using the hint, let C = AB and solve for A: CB�1
= ABB�1 ) CB�1

= A, but C = AB.

Therefore, A is the product of invertible matrices. By Theorem 6 of this section, A must also be invertible.
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Page 110, Problem 18:

Because the order of all matrices is n x n, their products and inverses (if they exist) are also n x n.

Because B is invertible, ABB�1
= BCB�1 ) AIn = BCB�1 ) A = BCB�1

.

Page 110, Problem 31:

To find the inverse, use the algorithm on page 108:

2

4
1 0 �2 1 0 0

�3 1 4 0 1 0

2 �3 4 0 0 1

3

5 !

2

4
1 0 �2 1 0 0

0 1 �2 3 1 0

0 �3 8 �2 0 1

3

5 !

2

4
1 0 �2 1 0 0

0 1 �2 3 1 0

0 0 2 7 3 1

3

5 !

2

4
1 0 0 8 3 1

0 1 0 10 4 1

0 0 1

7
2

3
2

1
2

3

5 .

So, the inverse is

2

4
8 3 1

10 4 1

7
2

3
2

1
2

3

5
.
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