MATH381

test #2, 10/20/16

Solutions

Total 100

Show all work legibly.

Name:_____

1. (40) Solve the LP problem

 $\max \mathbf{c}^T \mathbf{x} = 6x_1 + x_2 + 4x_3 \text{ subject to } 3x_1 + 7x_2 + x_3 \le 15, \ x_1 - 2x_2 + 3x_3 \le 20, \ \mathbf{x} \ge 0.$

Solution.

		$ x_1$	x_2	x_3	x_4	x_5	
	x_4	3	7	1	1	0	15
	x_5	1	-2	3	0	1	20
		-6	-1	-4	0	0	0
-	x_1	1	7/3	1/3	1/3	0	5
	x_5	0	-13/3	8/3	-1/3	1	15
		0	13	-2	2	0	30
-	x_1	1	33/8	0	3/8	-1/8	25/8
	x_3	0	-13/8	1	-1/8	3/8	45/8
		0	39/4	0	7/4	3/4	165/4

The solution is $x_1 = \frac{25}{8}, x_2 = 0, x_3 = \frac{45}{8}, z = \frac{165}{4}.$

2. (20) State the dual LP.

Solution.

min
$$\mathbf{b}^T \mathbf{y} = 15y_1 + 20y_2$$
 subject to $3y_1 + y_2 \ge 6$, $7y_1 - 2y_2 \ge 1$, $y_1 + 3y_2 \ge 4$, $\mathbf{y} \ge 0$

3. (40) Solve the dual LP.

Solution. Applying the graphical method we get a feasible region with three extreme points which are listed below along with the value of the objective function:

$$\begin{array}{c|cccc} y_1 & y_2 & z \\ \hline 1 & 3 & 75 \\ 7/4 & 3/4 & 165/4 \\ 4 & 0 & 60 \end{array}$$

.

4. (0) Compare results in 1 and 3 above.