MATH381

test #3, 12/01/16Total 100

Show all work legibly.

Name:_____

1. (30) Solve the LP problem

	x_1	—	x_2	+	$2x_3$	+	x_4	≤ 1
$\max \mathbf{c}^T \mathbf{x} = 2x_1 + 4x_2 + 6x_3 + 2x_4 \text{ subject to } \mathbf{x} \ge 0, \mathbf{x} \ge 0,$	$-2x_1$	+	x_2	+		+	x_4	≤ 2
	x_1	+	x_2	+	x_3	+	x_4	≤ 1

The optimal solution is: $x_1 =$, $x_2 =$, $x_3 =$, $x_4 =$.

2. (20) State the dual LP, and provide its solution.

The optimal solution is: $\mathbf{y} =$

3. (20) Add an additional constraint $x_1 + 2x_2 + 2x_3 + x_4 \leq 2$ to LP problem above, and solve it.

The optimal solution is: $x_1 =$, $x_2 =$, $x_3 =$, $x_4 =$.

4. (30) Find the values c'_1 for the cost functional $c'_1x_1 + 4x_2 + 6x_3 + 2x_4$ so that the LP problem in question 1 above has the same optimal solution with $\mathbf{c} = (2, 4, 6, 2)$ and $\mathbf{c}' = (c'_1, 4, 6, 2)$.

The values for $c_1^{'}$ are: