
MATH 221, Spring 2016 - Homework 2 Solutions

Due Tuesday, February 16

Section 1.4

Page 40, Problem 2:

The product is not defined because the order of the matrix is 3x1 and the order of the vector is 2x1. The number of

columns of the first matrix (3) does not equal the number of entries of the vector (2).

Page 40, Problem 4:

The product is defined because the order of the matrix is 2x3 and the vector is 3x1 (so the number of columns (3) in

the matrix is equal to the number of entries in the vector). The order of the product should be 2x1, the number of

rows of the matrix and the number of entries of the vector.

a. Using the definition, as in Example 1 on page 35:
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b. Using the row-vector rule (explained on page 38):
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Page 40, Problem 6:

This exercise is similar to part a of the problem 4, which is like Example 1. Use the elements of the vector as scalars

for the columns of the matrix:
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Page 40, Problem 8:

This is similar to the previous exercise, but now write the column vectors as a 2x4 matrix, the scalars as a 4x1

column-vector, and keep the left-side of the equation as a two-column vector:
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Page 40 Problem 9:

Vector Equation: x1
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Matrix Equation:
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Page 40, Problem 12:

Augmented Matrix:
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Page 40, Problem 13:

To answer this question, determine if u is in the Span of these columns, determine if u is a linear combination

of the columns of A. That is, determine if Ax = u has a solution. The augmented matrix is
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Because there is no pivot in the last column, a solution exists, so u is in the plane in R3
spanned by the

columns of A.

Page 41, Problem 35:

Assume Ay = z is true. Then, 5z = 5Ay = A(5y) (by Theorem 5b on page 39). Let x = 5y. Then, Ax = 5z

is also consistent.

Section 1.5

Page 47, Problem 2:

Use row operations on the augmented matrix:
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free variables, so the system has only the trivial solution.
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Page 47, Problem 8:

In order to solve this problem, put the matrix

⇥
a1 a2 a3 a4 0

⇤
(where a1, etc. are the columns of A)

in reduced echelon form:
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and x4. Solving for the free variables results in:
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x2 = �2x3 + 4x4
. Writing in parametric vector form:
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Page 47, Problem 10:

This is the same process as problem 8 in this section:
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Page 47, Problem 12:

This is the same process as the previous two problems:
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x1 = 2x2 � 3x3 � 29x5
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. The basic variables are x1, x4, and x6 .

The free variables are x2, x3, and x5. The solution in parametric vector form is:
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Page 47, Problem 15:

First, realize that the second equation is the first equation shifted by 2. Solving the first equation for x1 results in

x1 = �5x2 + 3x3. In vector form, this is the same as x =
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Page 47, Problem 18:

The system as an augmented matrix is
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Page 48, Problem 35:

By inspection, the second column of A, a2 = 3a1. Therefore, one nontrivial (not 0) solution is
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Page 48, Problem 38:

By Theorem 5b on page 39, A(cw) = cAw. Since w satisfies Ax = 0, Aw = 0. So, cAw = c0 = 0, so A(cw) = 0.

Section 2.1

Page 100, Problem 3:
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Page 100, Problem 5:

a. Ab1 =

2

4
�1 3

2 4

5 �3

3

5


4

�2

�
=

2

4
�10

0

26

3

5
Ab2 =

2

4
�1 3

2 4

5 �3

3

5


�2

3

�
=

2

4
11

8

�19

3

5
So, AB =

2

4
�10 11

0 8

26 �19

3

5

b. AB =

2

4
�1 3

2 4

5 �3

3

5


4 �2

�2 3

�
=

2

4
�1(4) + 3(�2) �1(�2) + 3(3)

2(4) + 4(�2) 2(�2) + 4(3)

5(4) +�3(�2) 5(�2) +�3(3)

3

5
=

2

4
�10 11

0 8

26 �19

3

5

Page 100, Problem 6:
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Page 100, Problem 12:

Because A is 2x2 and B is 2x2, our new matrix of all zeros will also be 2x2. Essentially, we want to solve
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Using row reduction,
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Page 101, Problem 24:

Remember, I3 =

2
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1 0 0

0 1 0

0 0 1
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. Let D =

⇥
d1 d2 d3

⇤
. By definition of matrix multiplication, the columns of AD

are equivalent to Ad1, Ad2, and Ad3, respectively. In order for AD = I3, the systems generated by Ad1, Ad2, and Ad3

must each have at least one solution. Since the columns of A span R3
, each of theses systems do have at least one solution

(see Theorem 4 in Section 1.4). So, the matrix D is found by selecting one of the solutions from each of the systems

(Ad1, Ad2, and Ad3) and using it as the columns of D.
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Page 101, Problem 26:

Let b 2 Rm
be arbitrary (b is an m x 1 matrix or vector). Assume AD = Im is true. Then, multiplying by b yields

ADb = Imb, which implies ADb = b (because Imis essentially 1). Because the order of the matrices is defined,

A(Db) = b (by Theorem 2 of this section on page 97). The product Db is a vector which can be written as x = Db.

So, Ax = b is true for every b in Rm
. By Theorem 4 in Section 1.4, since Ax = b is true for every b in Rm

, A has a

pivot position in every row. Because each pivot is in a di↵erent column, A must have at least as many columns as rows.

Page 101, Problem 33:

Let A be an arbitrary matrix of order i x j: A =
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The product AB is defined because the number of columns of A (j) equals the number of rows of B (j).
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The product B

T
A
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Looking at (AB)

T
and B

T
A

T
, it is clear that the matrices are equivalent.

6


