
MATH 221, Spring 2016 - Homework 7 Solutions

Due Tuesday, April 12

Section 4.4

Page 222, Problem 3:

Let B=[b1, b2, b3]. Then, x = 1b1+0b2+�2b3 = 1
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Page 222, Problem 7:

In this problem, we are solving the equation x = c1b1 + c2b2 + c3b3 =

⇥
b1 b2 b3
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for the coordinates

c1, c2, and c3. In this problem, this equation is represented by
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amounts to solving the augmented system

2

4
1 �3 2 8

�1 4 �2 �9

�3 9 4 6

3

5
. Row-reducing yields

2

4
1 0 0 �1

0 1 0 �1

0 0 1 3

3

5
.

So, [x]B =

2

4
�1

�1

3

3

5
.

Page 223, Problem 10:

As stated in this section (on page 219), the matrix PB =

⇥
b1 b2 b3

⇤
is the change-of-coordinates matrix from B to

the standard basis in Rn
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2

4
3 2 1

0 2 �2

6 �4 3

3

5
.

Page 223, Problem 14:

Any polynomial a+ bt+ ct
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The solution in reduced-echelon form is
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Page 223, Problem 22:

Let PB =

⇥
b1 ... bn

⇤
(which is an n⇥n matrix because its columns form a basis for Rn

). By definition, x = PB [x]B

which is a transformation of [x]B to x. Because the columns of PB are linearly independent (the form a basis for Rn
),

PB is invertible. Thus, left-side multiplication of P

�1
B results in P

�1
B x = [x]B, which is a transformation of x to [x]B

(x 7! [x]B). Therefore, take A = P

�1
B .

Section 4.4

Page 242, Problem 1:

• To find the change-of-coordinate matrix from B to C, we need to solve the systems x1c1+x2c2 = b1 and y1c1+y2c2 = b2

and form the matrix P
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Page 243, Problem 6:

• Using the same method as problem 1 (in more dimensions), it is clear that P
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• As before, [x]F =

2

4
1

�2

2

3

5
, so [x]D = P

D F
[x]F =

2

4
2 0 �3

�1 3 0

1 1 2

3

5

2

4
1

�2

2

3

5
=

2

4
�4

�7

3

3

5

Page 243, Problem 9:

• To find the change-of-coordinates matrix from B to C, use the method described on page 241, solving two systems

simultaneously:
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• To find the change-of-coordinates matrix from C to B, use the same method, but change the order:
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Section 3.2

Page 175, Problem 20:

Transforming the matrix
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Page 175, Problem 21:

Use row-operations to reduce the matrix:
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R2 +R3 ! R3 :
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. Thus, the determinant is �1 (because of the row-interchange at the beginning).

Because the determinant does not equal 0, the matrix is invertible.

Page 175, Problem 22:

Use row-operations to reduce the matrix:
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Page 176, Problem 37:

Straightforward calculation of detA = 3(1)� 0(6) = 3 and detB = 2(4)� 0(5) = 8 shows that

(detA)(detB) = 3(8) = 24. The determinant of the matrix product AB =


6 0

17 4

�
is

detAB = 6(4)� 0(17) = 24. Thus, 24 = detAB = (detA)(detB) = 24.

Page 176, Problem 41:

Calculate each determinant: detA = (a+ e)(d)� (b+ f)(c) = ad+ de� bc� cf = ad� bc+ ed� fc,

detB = ad� bc, detC = ed� fc. It is clear then that detA = detB + detC
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