MATH410

Midterm #1, 03/10/16Total 100 Solutions

Show all work legibly.

Name:_____

- 1. (25) Let b and c be real numbers. Suppose $z_1 = 1 + i$ is a root of the quadratic equation $z^2 + bz + c = 0$.
 - (20) Find the second root z_2 .

Solution.

$$0 = z_1^2 + bz_1 + c = \overline{z_1^2 + bz_1 + c} = \overline{z_1}^2 + b\overline{z_1} + c.$$

This shows that $\overline{z_1} = 1 - i$ is also a root of $z^2 + bz + c = 0$.

• (5) Determine b and c.

Solution. $z^2 + bz + c = (z - [1 + i])(z - [1 - i]) = z^2 - 2z + 2.$

- b = c =
- 2. (25) Let D be a set of complex numbers z that satisfy

$$|z-1| \le 1$$
 and $|z+1| \le 1$.

True or False? The set D is star-shaped.

Solution. The set D consists of a single element 0, hence it is star-shaped.

Mark one and explain.

 \Box True \Box False

3. (25) Suppose that $\sum_{n=1}^{\infty} z_n$ converges. True or False? $\lim_{n \to \infty} z_n = 0$.

Solution. Let $s_k = \sum_{n=1}^k z_n$, denote $\lim_{n \to \infty} s_n = \sum_{n=1}^\infty z_n$ by s_0 . For a given $\epsilon > 0$ we would like to identify N so that for each $n \ge N$ one has $|z_n| < \epsilon$. Since the sequence $\{s_k\}$ converges to s_0 there is N so that $|s_n - s_0| < \frac{\epsilon}{2}$ when $n \ge N$. In particular

$$|z_{n+1}| = |s_n - s_{n+1}| = |s_n - s_0 + s_0 - s_{n+1}| \le |s_n - s_0| + |s_0 - s_{n+1}| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Hence for $n \ge N+1$ one has $|z_n| < \epsilon$.

Mark one and explain.

- □ True □ False
- 4. (25) Suppose that the sequence $\{w_n\}$ converges. Let |z| < 1. True or False? The series $\sum_{n=1}^{\infty} w_n z^n$ converges.

Solution. Let $w = \lim_{n \to \infty} w_n$. There is N so that $|w - w_n| < 1$ if n > N. Let $M_1 = |w| + 1$, and $M_2 = \max\{|w_1|, \ldots, |w_N|\}$. If $M = \max\{M_1, M_2\}$, then $|w_n| < M$ for $n = 1, 2, \ldots$. Note that $\sum_{k=1}^n |w_k z^k| < M \sum_{k=1}^n |z|^k \le M \frac{1}{1-|z|}$. This implies convergence of the series $\sum_{k=1}^\infty |w_k z^k|$, and $\sum_{n=1}^\infty w_n z^n$.

Mark one and explain.

 $\hfill\square$ True $\hfill\square$ False