MATH 225, FALL 2017 - HOMEWORK #5

Due Thursday, October 19

Section 4.4, page 182: 9, 11, 20, 23, 26 Section 4.6, page 193: 1, 7, 12, 17

Section 4.4

Problem 9: For the equation y'' + 2y' - y = 10, we look for a particular solution of the form $y_p = A$. Then, $y'_p = y''_p = 0$. Substituting that back into the equation, we arrive at -A = 10, so A = -10. Therefore, a particular solution is $y_p(x) = -10$.

Problem 11: For the equation $y'' + y = 2^x$, we look for a particular solution of the form $y_p = A2^x$. Then, $y'_p = A2^x \ln(2)$ and $y''_p = A2^x (\ln 2)^2$. Substituting that back into the equation, we arrive at $A2^x (\ln 2)^2 + A2^x = 2^x$, so $2^x (A(\ln 2)^2 + A) = 2^x$. Therefore, $A = \frac{1}{(\ln 2)^2 + 1}$. Therefore, a particular solution is $y_p(x) = \frac{2^x}{(\ln 2)^2 + 1}$.

Problem 20: For the equation $y'' + 4y = 16t \sin 2t$, we first look at the solution to the homogeneous equation: y'' + 4y = 0, which is $y_h(t) = c_1 \cos(2t) + c_2 \sin(2t)$. Since 2 is a root in the auxillary equation, we look for a solution of the form $y_p = (At^2 + B^t) \cos(2t) + (Ct^2 + Dt) \sin(2t)$. Calculate y'_p and y''_p and then substitute these into the original equation and simplify to get a system of equations in terms of the coefficients. Solving that system yields the particular solution $y_p = -4t \cos(2t)$.

Problem 23: For the equation $y'' - 7y' = \theta^2$, we first check the solution to the homogeneous equation: y'' - 7y' = 0, which is $y(\theta) = c_1 + c_2 e^{7\theta}$. Since 0 is a root in the homogeneous equation, we look for a particular solution of the form $y_p = A\theta^3 + B\theta^2 + C\theta + D$. Therefore, $y'_p = 3A\theta^2 + 2B\theta + C$ and $y''_p = 6A\theta + 2B$. Substituting this into the original equation, 6A - 14B = 0

we get $6A\theta + 2B - 21A\theta^2 - 14B\theta - 7C = \theta^2$. Therefore, we get the system of equations 2B - 7C = 0. Therefore, $A = -\frac{1}{21}$, -21A = 1

$$B = -\frac{1}{49}$$
, and $C = -\frac{2}{343}$ so $y_p = -\frac{1}{21}\theta^3 - \frac{1}{49}\theta^2 - \frac{2}{343}\theta$.

Problem 26: For the equation $y'' + 2y' + 2y = 4te^{-t}\cos t$, we first check the solution to the homogeneous equation: y'' + 2y' + 2y = 0, which is $y(t) = c_1e^{-t}\sin(t) + c_2e^{-t}\cos(t)$. Since we have $e^{-t}\cos(t)$ in the homogeneous solution, we look for a particular solution of the form $y_p = (At^2 + Bt)e^{-t}\cos(t) + (Ct^2 + Dt)e^{-t}\sin(t)$. Then, we get $y'_p = (C - A)t^2e^{-t}\cos t + (-A - C)t^2e^{-t}\sin t + (2A - B + D)te^{-t}\cos t + (-A + 2C - D)te^{-t}\sin t + Ae^{-t}\cos t + De^{-t}\sin t$ and $y''_p = -2Ct^2e^{-t}\cos t + 2At^2e^{-t}\sin t + (4C - 4A - 2D)te^{-t}\cos t + (-4A + 2B - 4C)te^{-t}\sin t + (2A - 2B + 2D)e^{-t}\cos t + (-2A + 2C - 2D)e^{-t}\sin t$. Substituting into the original equation yields $4Cte^{-t}\cos(t) - 4Ate^{-t}\sin t + (2A - D)e^{-t}\cos t + (-2B + 2C)e^{-t}\sin t = 4te^{-t}\cos t$.

4C = 4-4A = 0

The systems of equations is $\begin{array}{c} -4A=0\\ 2A+D=0\\ -2B+2C=0 \end{array}$, so B=C=1 and A=D=0. Therefore, the particular solution is

 $y_p = te^{-t}\cos t + t^2 e^{-t}\sin t.$

Section 4.6

Problem 1: First, we must solve the homogeneous equation y'' + y = 0, which is $y(x) = c_1 \cos x + c_2 \sin x$. Therefore, we look for a particular solution $y_p = v(x) \cos x + u(x) \sin x$. Using the formula for variation of parameters, we find $v(x) = \int \frac{-\sec x \sin x}{\cos^2 x + \sin^2 x} dx = \int -\tan x \, dx = \ln(\cos x)$ and $u(x) = \int \frac{\sec x \cos x}{\cos^2 x + \sin^2 x} dx = \int dx = x$. therefore, the particular solution is $y_p = \ln(\cos x) \cos x + x \sin x$. Therefore, the general solution is the sum of the homogeneous solution and particular solution: $y(x) = c_1 \cos x + c_2 \sin x + \ln(\cos x) \cos x + x \sin x$.

Problem 7: First, we must solve the homogeneous equation y'' + 4y' + 4y = 0, which is $y(t) = c_1 e^{-2t} + c_2 t e^{-2t}$. Therefore, we look for a particular solution $y_p = v(t)e^{-2t} + u(t)te^{-2t}$. Using the formula for variation of parameters, we find $v(t) = \int \frac{(-e^{-2t}\ln t)te^{-2t}}{e^{-2t}(e^{-2t}-2te^{-2t})+e^{-2t}2te^{-2t}} dt = \int -t\ln t \, dt = \frac{1}{4}t^2(1-2\ln t)$ and $u(t) = \int \frac{(e^{-2t}\ln t)e^{-2t}}{e^{-2t}(e^{-2t}-2te^{-2t})+e^{-2t}2te^{-2t}} dt = \int \ln t \, dt = t\ln t - t$. therefore, the particular solution is $y_p = e^{-2t}(\frac{1}{4}t^2(1-2\ln t)) + te^{-2t}(t\ln t - t)$. Therefore, the general solution is the sum of the homogeneous solution and particular solution: $y(x) = c_1e^{-2t} + c_2te^{-2t} + e^{-2t}(\frac{1}{4}t^2(1-2\ln t)) + te^{-2t}(t\ln t - t)$.

Problem 12: First, find the solution to the homogeneous equation: y'' + y = 0. It is $y(t) = c_1 \cos t + c_2 \sin t$. Consider $y'' + y = \tan t$, $y'' + y = e^{3t} - 1$. A particular solution to the first equation is found in Example 1 of this section using the variation of parameters. It is $y_p = -\cos t \ln (\sec t + \tan t)$. A particular solution to the second equation can be found using the method of undetermined coefficients. The solution is $y_p = (1/10)e^{3t} - 1$. By the Superposition Principle, a particular solution to the original equation is $y_p = -\cos t \ln (\sec t + \tan t) + (1/10)e^{3t} - 1$. Therefore, the general solution is $y(t) = c_1 \cos t + c_2 \sin t + -\cos t \ln (\sec t + \tan t) + (1/10)e^{3t} - 1$.

Problem 17: In this problem, you must use the variation of parameters. The solution is $y(x) = c_1 \cos 2t + c_2 \sin 2t - e^t/5 - (1/2)(\cos 2t) \ln(\sec 2t + \tan 2t)$.