MATH225 quiz #1, 09/28/17 Total 120 Solutions

Show all work legibly.

Name:

- 1. (20) Consider y' xy = x.
 - (a) (5) Identify y' xy = x.

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ none of the above

(b) (15) Solve y' - xy = x.

The solution is: **Solution**.

$$y' - xy = x$$

$$y' = x(1+y)$$

$$\frac{y'}{1+y} = x$$

$$y(x) = ce^{x^2/2} - 1$$

- 2. (20) Consider the differential equation $(4 + t^2)y'(t) + 2ty(t) = 4t$.
 - (a) (5) Identify the equation.

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ none of the above

(b) (15) Solve the equation.

The solution is: **Solution**. Since

$$\frac{d}{dt}[(4+t^2)y] = (4+t^2)y'(t) + 2ty(t) = 4t$$

one has $(4+t^2)y = 2t^2 + c$ and $y(t) = \frac{2t^2}{4+t^2} + \frac{c}{4+t^2}$.

- 3. (20) Consider $y'(x) = \frac{x^2}{1 y^2}$.
 - (a) (5) Identify the equation.

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ none of the above

(b) (15) Solve the equation.

The solution is:

Solution. We can rewrite the equation as $(1 - y^2)y'(x) = x^2$, and $y - \frac{y^3}{3} - \frac{x^3}{3} = c$.

- 4. (20) Consider $y' + \frac{4}{x}y = x^3y^3$.
 - (a) (5) Identify the equation.

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ none of the above

(b) (15) Solve the initial value problem

$$y' + \frac{4}{x}y = x^3y^3, \ y(1) = 1, \ x > 0.$$

The solution is:

Solution. The substitution $u = y^{-2}$ leads to the linear equation $u' - \frac{8}{x}u = -2x^3$. The solution of this equations is $u(x) = \frac{1}{2}x^4 + cx^8$, and $y(x) = \left(\frac{1}{2}x^4 + cx^8\right)^{-\frac{1}{2}}$. The initial condition yields $c = \frac{1}{2}$.

5. (20) Solve the initial value problem $y' = \sqrt{2x + y} - 2$, y(0) = 1.

(a) (5) Identify the equation.

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ none of the above

(b) (15) Solve the equation.

The solution is:

Solution. Let u = 2x + y. Then u' = 2 + y', hence

$$u' = 2 + y' = 2 + \sqrt{u} - 2$$
, and $u' = \sqrt{u}$.

The solution for the separable equation is $2u^{\frac{1}{2}} = x + c$, and $u = \left(\frac{x+c}{2}\right)^2$, and $y = \left(\frac{x+c}{2}\right)^2 - 2x$. Substitution y(0) = 1 leads to $c = \pm 2$.

6. (20) Identify and solve $(e^{4y} + 2x)dy - dx = 0$.

(a) (5) Identify the equation.

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ none of the above

(b) (15) Solve the equation.

The solution is: **Solution**. $\frac{dx}{dy} = e^{4y} + 2x$, and $\frac{dx}{dy} - 2x = e^4y$. The general solution of this linear equation is $x = \frac{1}{2}e^{4y} + ce^{2y}$.