MATH 225, SPRING 2017 - HOMEWORK #2

Due Thursday, February 16

Section 2.4, page 61: 10, 15, 21, 25, 27(b), 33(a) Section 2.6, page 74: 1, 11, 13

Section 2.4

Problem 10: For the equation $(2xy + 3)dx + (x^2 - 1)dy = 0$ let M(x, y) = 2xy + 3 and $N(x, y) = x^2 - 1$. Then, $\frac{\partial M}{\partial y} = 2x$ and $\frac{\partial N}{\partial x} = 2x$, so the equation is exact. To solve the equation, first integrate M with respect to x so that $F(x, y) = \int (2xy + 3)dx + g(y) = x^2y + 3x + g(y)$. Then, take the partial derivative of F with respect to y and set that equal to N: $\frac{\partial F}{\partial y} = x^2 + g'(y) = x^2 - 1 = N(x, y)$. Finally, solve for g'(y): g'(y) = -1 so that g(y) = -y. Therefore, $F(x, y) = x^2y + 3x - y$ and $x^2y + 3x - y = C$ is a general solution.

Problem 15: For the equation $\cos \theta dr - (r \sin \theta - e^{\theta}) d\theta = 0$ let $M(r, \theta) = \cos \theta$ and $N(r, \theta) = -(r \sin \theta - e^{\theta})$. Then, $\frac{\partial M}{\partial \theta} = -\sin \theta$ and $\frac{\partial N}{\partial r} = -\sin \theta$, so the equation is exact. To solve the equation, first integrate M with respect to r so that $F(r, \theta) = \int (\cos \theta) dr + g(\theta) = r \cos \theta + g(\theta)$. Then, take the partial derivative of F with respect to θ and set that equal to $N: \frac{\partial F}{\partial \theta} = -r \sin \theta + g'(\theta) = -(r \sin \theta - e^{\theta}) = N(r, \theta)$. Finally, solve for $g'(\theta): g'(\theta) = e^{\theta}$ so that $g(\theta) = e^{\theta}$. Therefore, $F(r, \theta) = r \cos \theta + e^{\theta}$ and $r \cos \theta + e^{\theta} = C$ is a general solution.

Problem 21: For the equation $(1/x + 2y^2x)dx + (2yx^2 - \cos y)dy = 0$ let $M(x, y) = 1/x + 2y^2x$ and $N(x, y) = 2yx^2 - \cos y$. Then, $\frac{\partial M}{\partial y} = 4yx$ and $\frac{\partial N}{\partial x} = 4yx$, so the equation is exact. To solve the equation, first integrate M with respect to x so that $F(x, y) = \int (1/x + 2y^2x)dx + g(y) = \ln |x| + y^2x^2 + g(y)$. Then, take the partial derivative of F with respect to y and set that equal to N: $\frac{\partial F}{\partial y} = 2yx^2 + g'(y) = 2yx^2 - \cos y = N(x, y)$. Finally, solve for g'(y): $g'(y) = -\cos y$ so that $g(y) = -\sin y$. Therefore, $F(x, y) = \ln |x| + y^2x^2 - \sin y$ and $\ln |x| + y^2x^2 - \sin y = C$ is a general solution. Using the initial condition $y(1) = \pi$, let $y = \pi$ and x = 1 and solve for C: $C = \ln 1 + \pi^2 - \sin \pi = \pi^2$, so that the solution of the equation is $\ln |x| + y^2x^2 - \sin y = \pi^2$.

Problem 25: For the equation $(y^2 \sin x)dx + (1/x - y/x)dy = 0$ let $M(x, y) = y^2 \sin x$ and N(x, y) = 1/x - y/x. Then, $\frac{\partial M}{\partial y} = 2y \sin x$ and $\frac{\partial N}{\partial x} = \frac{y}{x^2} - \frac{1}{x^2}$, so the equation is not exact. However, the equation is separable: $(y^2 \sin x)dx + (1/x - y/x)dy = 0 \Rightarrow y^2 \sin x dx = -\frac{1-y}{x}dy \Rightarrow x \sin x dx = \frac{y-1}{y^2}dy$. Integrating both sides yields $\sin x - x \cos x + C = \ln |y| + \frac{1}{y}$. Use the initial condition $y(\pi) = 1$ and solve for C by letting $x = \pi$ and y = 1: $\sin(\pi) - \pi \cos(\pi) + C = \ln(1) + 1 \Rightarrow \pi + C = 1 \Rightarrow C = 1 - \pi$. Therefore, the solution to the equation is $\sin x - x \cos x + 1 - \pi = \ln |y| + \frac{1}{y}$ or $\sin x - x \cos x = \ln |y| + \frac{1}{y} + \pi - 1$.

Problem 27b: For the equation $M(x, y)dx + (\sin x \cos y - xy - e^{-y})dy = 0$, if $N(x, y) = \sin x \cos y - xy - e^{-y}$, we need M(x, y) so that $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} = \cos x \cos y - y$. Therefore, $M(x, y) = \int (\cos x \cos y - y)dy = \cos x \sin y - \frac{y^2}{2} + f(x)$. Check: $\frac{\partial M}{\partial y} = \cos x \cos y - y = \frac{\partial N}{\partial x}$.

Problem 33a: For this problem, we need to solve the equation $\frac{\partial F}{\partial y}(x, y)dx - \frac{\partial F}{\partial x}(x, y)dy = 0$. For the equation $2x^2 + y^2 = k$, $\frac{\partial F}{\partial y} = 2y$ and $\frac{\partial F}{\partial x} = 4x$ so the differential equation is 2ydx - 4xdy = 0, which is separable: $\frac{dx}{x} = 2\frac{dy}{y} \Rightarrow \ln|x| + C = 2\ln y \Rightarrow y^2 = e^{\ln x + C} \Rightarrow y^2 = Cx$, or $x = Cy^2$. An additional solution is x = 0, y = 0.

Section 2.6

Problem 1: The equation $2txdx + (t^2 - x^2)dt = 0$ can be rewritten as $\frac{dx}{dt} = \frac{x^2 - t^2}{2tx} = \frac{1}{2}\left(\frac{x}{t} - \frac{t}{x}\right)$, which is a function of $\frac{x}{t}$, so the equation is homogeneous. Notice that the function can also be written as $\frac{dx}{dt} - \frac{1}{2t}x = -\frac{t}{2}x^{-1}$, so the equation is also a Bernoulli equation.

Problem 11: The equation $(y^2 - xy)dx + x^2dy = 0$ can be rewritten as $\frac{dy}{dx} = \frac{xy-y^2}{x^2} = \frac{y}{x} - \left(\frac{y}{x}\right)^2$. Let $v = \frac{y}{x}$. Then, $\frac{dy}{dx} = v + x\frac{dv}{dx} = v - v^2 \Rightarrow -\frac{dv}{v^2} = \frac{dx}{x}$. So, $\frac{1}{v} = \ln|x| + C$. Substituting $v = \frac{y}{x}$, we get $\frac{x}{y} = \ln|x| + C$ or $y = \frac{x}{\ln|x|+C}$. An additional solution is x = 0, y = 0.

Problem 13: The equation $\frac{dx}{dt} = \frac{x^2 + t\sqrt{t^2 + x^2}}{tx}$ can be rewritten as $\frac{dx}{dt} = \frac{x}{t} + \frac{\sqrt{t^2 + x^2}}{x} = \frac{x}{t} + \frac{\sqrt{1 + (\frac{x}{t})^2}}{\frac{x}{t}}$. Let $v = \frac{x}{t}$. Then, $\frac{dx}{dt} = v + t\frac{dv}{dt} = v + \frac{\sqrt{1 + v^2}}{v}$. Therefore, $\frac{v}{\sqrt{1 + v^2}}dv = \frac{dt}{t}$. The integral $\int \frac{v}{\sqrt{1 + v^2}}dv$ can be computed using substitution, letting $u = 1 + v^2$ so du = 2vdv, then the integral is $\frac{1}{2}\int \frac{du}{\sqrt{u}} = \sqrt{u} = \sqrt{1 + v^2}$. Therefore, the solution is $\sqrt{1 + v^2} = \ln|t| + C$. Substituting $v = \frac{x}{t}$, we get $\sqrt{1 + (\frac{x}{t})^2} = \ln|t| + C$.