MATH 225, SPRING 2017 - HOMEWORK #6

Due Thursday, April 13

Section 7.2, page 360: 2, 3, 12, 13, 17, 30 Section 7.3, page 365: 4, 9, 21, 22, 27, 31 Section 7.4, page 374: 4, 10, 22, 27, 31

Section 7.2

Problem 2: $\mathscr{L}\{t^2\} = \int_0^\infty e^{-st} t^2 dt$, which can be computed using integration by parts (remember to treat *s* as a constant). Let $u = t^2$, then du = 2t dt and $dv = e^{-st}$ so that $v = -\frac{e^{-st}}{s}$. Therefore, $\int e^{-st}t^2 dt = -\frac{e^{-st}t^2}{s} + \frac{2}{s} \int e^{-st}t dt$. The second integral can be computed using integration by parts too. Let u = t, then du = 2 dt and when $dv = e^{-st}$, $v = -\frac{e^{-st}}{s}$. Then, $\int e^{-st}t = -\frac{te^{-st}}{s} + \frac{1}{s} \int e^{-st} dt = -\frac{te^{-st}}{s} - \frac{1}{s^2}e^{-st}$. Thus, the original integral becomes $\int e^{-st}t^2 dt = -\frac{e^{-st}t^2}{s} + \frac{2}{s} [-\frac{te^{-st}}{s} - \frac{1}{s^2}e^{-st}] = -\frac{e^{-st}t^2}{s} - \frac{2te^{-st}}{s^2} - \frac{2e^{-st}}{s^3}$. Then, the problem is to evaluate as $t \to \infty$ and at t = 0. As $t \to \infty$, use l'Hospital's rule and you will find this expression tends to 0 as long as s > 0. At t = 0, the solution is $-\frac{2}{s^3}$. Therefore, the solution is $\mathscr{L}\{t^2\} = 0 - (-\frac{2}{s^3}) = \frac{2}{s^3}$ for s > 0.

Problem 3: $\mathscr{L}\lbrace e^{6t}\rbrace = \int_0^\infty e^{-st} e^{6t} dt = \int_0^\infty e^{-st+6t} dt$, which can be computed using a substitution. Let u = -st + 6t, then du = (-s+6) dt. Thus, $\int e^{-st+6t} dt = \frac{1}{-s+6} \int e^u du$. Therefore, the solution to the integral is $\frac{e^{-st+6t}}{-s+6}$. Then, the problem is to evaluate as $t \to \infty$ and at t = 0. As $t \to \infty$, then e^{-st+6t} tends to 0 as long as s > 6. At t = 0, the solution is $\frac{1}{6-s}$. Therefore, the solution is $\mathscr{L}\lbrace t^2 \rbrace = 0 - (\frac{1}{6-s}) = \frac{1}{s-6}$ for s > 6.

Problem 12: $\mathscr{L}{f(t)} = \int_0^3 e^{-st} e^{2t} dt + \int_3^\infty e^{-st} dt$. The first integral can be computed using a substitution as in problem 3. Let u = -st + 2t, then du = (-s+2) dt. Thus, $\int e^{-st+2t} dt = \frac{1}{-s+2} \int e^u du$. Therefore, the solution to the first integral is $\frac{e^{-st+2t}}{-s+2}$. Evaluating this at t = 3 and t = 0 results in the solution $\frac{e^{-3s+6}-1}{2-s}$, which exists for s > 2. The second integral is simply $-\frac{1}{s}e^{-st}$. As $t \to \infty$, then e^{-st} tends to 0 as long as s > 0. At t = 3, the solution is $-\frac{e^{-3s}}{2-s}$ so that the integral evaluated at the bounds 0 to infinity is $0 - (-\frac{1}{s}) = \frac{e^{-3s}}{s}$. Therefore, the solution is $\mathscr{L}{f(t)} = \frac{e^{-3s+6}-1}{2-s} + \frac{e^{-3s}}{s}$ for s > 2.

Problem 13: Using the linearity of the Laplace transform: $\mathscr{L}\{6e^{-3t} - t^2 + 2t - 8\} = 6\mathscr{L}\{e^{-3t}\} - \mathscr{L}\{t^2\} + 2\mathscr{L}\{t\} - 8\mathscr{L}\{1\}$. Using the table of Laplace transforms, we find that this expression is equal to $6\left(\frac{1}{s+3}\right) - \frac{2}{s^3} + 2\left(\frac{1}{s^2}\right) - 8\left(\frac{1}{s}\right)$, which is defined for s > 0.

Problem 17: Using the linearity of the Laplace transform: $\mathscr{L}\{e^{3t}\sin 6t - t^3 + e^t\} = \mathscr{L}\{e^{3t}\sin 6t\} - \mathscr{L}\{t^3\} + \mathscr{L}\{e^t\}$. Using the table of Laplace transforms, we find that this expression is equal to $\frac{6}{(s-3)^2+36} - \frac{6}{s^4} + \frac{1}{s-1}$, which is defined for s > 3.

Problem 30: Each of the Laplace transform's listed in the table is a proper rational function where the degree of the denominator is greater than the degree of the numerator. Hence, as $s \to \infty$, each function approaches 0.

Section 7.3

Problem 4: Using linearity $\mathscr{L}{3t^4 - 2t^2 + 1} = 3\mathscr{L}{t^4} - 2\mathscr{L}{t^2} + \mathscr{L}{1} = 3\left(\frac{4!}{s^5}\right) - 2\left(\frac{2!}{s^3}\right) + \frac{1}{s} = \frac{72}{s^5} - \frac{4}{s^3} + \frac{1}{s}$, which is defined for s > 0.

Problem 9: Using Table 7.2, $\mathscr{L}\{e^{-t}t\sin(2t)\} = \mathscr{L}\{te^{-t}\sin(2t)\} = (-1)^1 \frac{d}{ds}(\mathscr{L}\{e^{-t}\sin(2t)\})$. Using Table 7.1, $\mathscr{L}\{e^{-t}\sin(2t)\} = \frac{2}{(s+1)^2+4}$. The derivative of this function is $\frac{-4(s+1)}{((s+1)^2+4)^2}$. Therefore, $\mathscr{L}\{e^{-t}t\sin(2t)\} = (-1)^1 \frac{d}{ds}(\mathscr{L}\{e^{-t}\sin(2t)\}) = -1\left(\frac{-4(s+1)}{((s+1)^2+4)^2}\right) = \frac{4(s+1)}{((s+1)^2+4)^2}$.

Problem 21: Using the translation property, $\mathscr{L}\{e^{at}\cos bt\} = \mathscr{L}\{\cos bt\}(s-a) = \frac{s-a}{(s-a)^2+b^2}$. Note: $\mathscr{L}\{\cos bt\}(s-a)$ is the Laplace transform of $\cos bt$ (which is a function of s) evaluated at (s-a), not multiplied!

Problem 22: We know when n = 0, $\mathscr{L}\lbrace t^0 \rbrace = \mathscr{L}\lbrace 1 \rbrace = \frac{1}{s}$. Using formula 6, $\mathscr{L}\lbrace t^n \rbrace = \mathscr{L}\lbrace t^n \cdot 1 \rbrace = (-1)^n \cdot \frac{d^n}{ds^n}(\mathscr{L}\lbrace 1 \rbrace) = (-1)^n \frac{d^n}{ds^n}(\frac{1}{s})$. At this point, notice that $\frac{d^n}{ds^n}(\frac{1}{s}) = (-1)(-2)\cdots(-n)\frac{1}{s^{n+1}} = (-1)^n(1\cdot 2\cdots n)\frac{1}{s^{n+1}} = (-1)^n(n!)\frac{1}{s^{n+1}}$. Therefore, $(-1)^n \frac{d^n}{ds^n}(\frac{1}{s}) = (-1)^n(-1)^n(n!)\frac{1}{s^{n+1}} = (-1)^{2n}(n!)\frac{1}{s^{n+1}}$. However, note that 2n is always an even integer; which means $(-1)^{2n}$ is always equal to 1. Therefore, we get $\frac{n!}{s^{n+1}}$ as the final solution.

Problem 27: Use the hint. Since f is piecewise continuous and of exponential order its Laplace transform exists. Let F(s) be the Laplace transform of f. Then, by definition, $F(s) = \int_0^\infty e^{-st} f(t) dt$. Then, integrate both sides with respect to s, $\int_s^\infty F(s) ds = \int_s^\infty [\int_0^\infty e^{-st} f(t) dt] ds$. Then, by Leibniz's rule we interchange the order of integration so that $\int_s^\infty F(s) ds = \int_0^\infty [\int_s^\infty e^{-st} f(t) ds] dt = \int_0^\infty f(t) [\lim_{a \to \infty} \frac{-e^{-st}}{t}]_s^\infty dt = \int_0^\infty f(t) \frac{e^{-st}}{t} dt = \mathscr{L}\{\frac{f(t)}{t}\}$. Therefore, $\frac{d}{ds}\mathscr{L}\{\frac{f(t)}{t}\} = \frac{d}{ds}\int_s^\infty F(s) ds = \lim_{a \to \infty} F(a) - F(s) = 0 - F(s) = -F(s)$ (using the result of part (b) in Problem 26 because $F(s) = \mathscr{L}\{f\}(s)$. So, $F(s) = \int_s^\infty F(u) du$.

Problem 31: $\mathscr{L}\lbrace g(t)\rbrace = \int_0^c e^{-st} 0 \, dt + \int_c^\infty e^{-st} f(t-c) \, dt$. The first integral is 0. For the second integral, let t = x + c, so that it becomes $\int_0^\infty f(x) e^{-s(x+c)} \, dx = \int_0^\infty f(x) e^{-sx} e^{-sc} \, dx = e^{-sc} \int_0^\infty e^{-sx} f(x) \, dx = e^{-sc} \mathscr{L}\lbrace f \rbrace(s)$.

Section 7.4

Problem 4: $\mathscr{L}^{-1}\left\{\frac{4}{s^2+9}\right\}(t) = \mathscr{L}^{-1}\left\{\frac{\frac{4}{3}\cdot 3}{s^2+3^2}\right\}(t) = \frac{4}{3}\mathscr{L}^{-1}\left\{\frac{3}{s^2+3^2}\right\}(t) = \frac{4}{3}\sin 3t$

Problem 10: $\mathscr{L}^{-1}\left\{\frac{s-1}{2s^2+s+6}\right\}(t) = \mathscr{L}^{-1}\left\{\frac{s-1}{2(s^2+s/2+3)}\right\}(t) = \frac{1}{2}\mathscr{L}^{-1}\left\{\frac{s-1}{(s+1/4)^2+47/16}\right\}(t)$. So, $\frac{1}{2}\mathscr{L}^{-1}\left\{\frac{s+1/4}{(s+1/4)^2+(\sqrt{47}/4)^2} - \frac{5}{\sqrt{47}}\frac{\sqrt{47}/4}{(s+1/4)^2+(\sqrt{47}/4)^2}\right\}(t) = \frac{1}{2}e^{-t/4}\cos\left(\frac{\sqrt{47}t}{4}\right) - \frac{5}{2\sqrt{47}}e^{-t/4}\sin\left(\frac{\sqrt{47}t}{4}\right)$

Problem 22: To compute $\mathscr{L}^{-1}\left\{\frac{s+11}{(s-1)(s+3)}\right\}(t)$, first use partial fractions to decompose the rational function $\frac{s+11}{(s-1)(s+3)} = \frac{A}{s-1} + \frac{B}{s+3} \Rightarrow As + 3A + Bs - B = s + 11$. Therefore, A + B = 1 and 3A - B = 11. Solving this system yields A = 3, B = -2. So, we get $\mathscr{L}^{-1}\left\{\frac{s+11}{(s-1)(s+3)}\right\}(t) = \mathscr{L}^{-1}\left\{\frac{3}{s-1} - \frac{2}{s+3}\right\}(t) = 3e^t - 2e^{-3t}$.

Problem 27: In order to do this problem, first solve for $F(s):F(s)[s^2-4] = \frac{5}{s+1} \Rightarrow F(s) = \frac{5}{s+1} \cdot \frac{1}{s^2-4} = \frac{5}{(s+1)(s+2)(s-2)}$. Then, use partial fractions to decompose the rational function $\frac{5}{(s+1)(s+2)(s-2)} = \frac{A}{s+1} + \frac{B}{s+2} + \frac{C}{s-2} \Rightarrow A(s^2-4) + B(s^2-s-2) + C(s^2+3s+2) = 5$. Therefore, A+B+C=0, -B+3C=0, and -4A-2B+2C=5. Solving this system yields $A = -\frac{5}{3}, B = \frac{5}{4}, C = \frac{5}{12}$. Then, we are solving $= \mathscr{L}^{-1}\{\frac{-5}{3(s+1)} + \frac{5}{4(s+2)} + \frac{5}{12(s-2)}\}(t) = -\frac{5}{3}e^{-t} + \frac{5}{4}e^{-2t} + \frac{5}{12}e^{2t}$.

Problem 31: The Laplace transform, by definition, is a definite integral. So, the discrete points at which the function is defined do not matter. Therefore, $\mathscr{L}{f_1} = \mathscr{L}{t} = \frac{1}{s^2}$, $\mathscr{L}{f_2} = \mathscr{L}{t} = \frac{1}{s^2}$, $\mathscr{L}{f_3} = \mathscr{L}{t} = \frac{1}{s^2}$. By definition of the inverse Laplace transform, the function $f = \mathscr{L}^{-1}{F(s)}$ must be continuous. Since f_1 and f_2 have points of discontinuity, the inverse Laplace transform of $1/s^2$ is f(t) = t.