MATH225 quiz #2, 03/30/17 Total 100 Solutions

Show all work legibly.

Name:___

1. (10) Find the general solution $y_g(x)$ of y'' - y' - 6y = 0.

The general solution $y_g(x) =$ Solution. $r^2 - r - 6 = 0$, hence $y_g(x) = c_1 e^{-2x} + c_2 e^{3x}$.

2. (10) Find the general solution $y_g(x)$ of $y_g(x)$ of y'' - 2y' + y = 0.

The general solution $y_g(x) =$ Solution. $0 = r^2 - 2r + 1 = (r - 1)^2, y_g(x) = c_1 e^x + c_2 x e^x$.

3. (10) Find the general solution $y_g(x)$ of y'' + y' + y = 0.

The general solution $y_q(x) =$

Solution.
$$0 = r^2 + r + 1, r = -\frac{1}{2} \pm i\frac{\sqrt{3}}{2}$$
. Hence
 $y_g(x) = c_1 e^{-\frac{1}{2}x} \cos\left(\frac{\sqrt{3}}{2}x\right) + c_2 e^{-\frac{1}{2}x} \sin\left(\frac{\sqrt{3}}{2}x\right)$.

4. (20) Given that $y_1(x) = \frac{1}{x}$ is one solution of $2x^2y'' + 3xy' - y = 0$, x > 0 find a second linearly independent solution $y_2(x)$.

The second linearly independent solution is: $y_2(x) =$

Solution. Set $y_2(x) = \frac{c(x)}{x}$. Substituting for y, y', and y'' into the equation we get 2xc''(x) - c'(x) = 0. This is a separable equation, and we find $c'(x) = c_1 x^{1/2}$, and $c(x) = 2/3c_1 x^{3/2} + c_2$. Hence $y_2(x) = 2/3c_1 x^{1/2} + c_2 x^{-1}$.

- 5. (25) Consider $y'' 3y' 4y = 2\sin x$.
 - (a) (5) Find the general solution $y_g(x)$ for the corresponding homogeneous equation y'' 3y' 4y = 0.

The solution is: $y_g(x) =$ Solution. $r^2 - 3r - 4 = 0$, hence r = -1, 4, and $y_g(x) = c_1 e^{-x} + c_2 e^{4x}$. (b) (15) Find a particular solution $y_p(x)$ of the equation $y'' - 3y' - 4y = 2\sin x$.

The solution is: $y_p(x) =$ **Solution**. We are looking for $y_p(x) = A \sin x + B \cos x$. Plugging $y_p(x)$ into the equation leads to the system of equations

$$-5A + 3B = 2$$
, and $-3A - 5B = 0$.

That is $y_p(x) = -\frac{5}{17}\sin x + \frac{3}{17}\cos x$.

(c) (5) Find the general solution y(x) for the equation $y'' - 3y' - 4y = 2\sin x$.

The solution is: y(x) =Solution. $y(x) = y_p(x) + y_g(x) = -\frac{5}{17} \sin x + \frac{3}{17} \cos x + c_1 e^{-x} + c_2 e^{-4x}$.

- 6. (25) (20) Consider $y'' + y = \frac{1}{\cos x}, \ 0 < x < \frac{\pi}{2}.$
 - (a) (5) Find the general solution $y_g(x)$ for the corresponding homogeneous equation y'' + y = 0.

The solution is: $y_g(x) =$ Solution. $r^2 + 1 = 0$, hence $r = \pm i$, and $y_g(x) = c_1 \cos x + c_2 \sin x$.

(b) (15) Find a particular solution $y_p(x)$ of the equation $y'' + y = \frac{1}{\cos x}$.

The solution is: $y_p(x) =$ **Solution**. We are looking for a particular solution $y_p(x) = c_1(x) \cos x + c_2(x) \sin x$, where $c'_1(x) = -\tan x$ and $c'_2(x) = 1$. This yields

 $c_1(x) = \ln \cos x, \ c_2(x) = x, \ \text{and} \ y_p(x) = \cos x \ln \cos x + x \sin x.$

(c) (5) Find the general solution y(x) for the equation $y'' + y = \frac{1}{\cos x}$.

The solution is: y(x) =Solution. $y(x) = y_p(x) + y_g(x) = \cos x \ln \cos x + x \sin x + c_1(x) \cos x + c_2(x) \sin x$.