
MATH 221, Spring 2018 - Homework 10 Solutions

Due Tuesday, May 1

Section 5.2

Page 279, Problem 2:

• A−λI =

[
−4− λ −1

6 1− λ

]
and the characteristic polynomial is det(A−λI) = (−4−λ)(1−λ)−(−1)(6) = λ2 +3λ+2

• The solutions to the equation λ2 + 3λ+ 2 = 0 are λ = −1, λ = −2.

Page 279, Problem 4:

• A− λI =

[
8− λ 2

3 3− λ

]
and the characteristic polynomial is det(A− λI) = (8− λ)(3− λ)− (3)(2) = λ2 − 11λ+ 18

• The solutions to λ2 − 11λ+ 18 = 0 are λ = 9, λ = 2.

Page 272, Problem 7:

• A−λI =

[
5− λ 3
−4 4− λ

]
and the characteristic polynomial is det(A−λI) = (5−λ)(4−λ)− (3)(−4) = λ2− 9λ+ 32

• The solutions to λ2 − 9λ + 32 = 0 are found using the quadratic formula λ =
9±
√

92−4(1)(32)
2(1) ⇒ λ = 9

2 ±
√
81−128

2 .

Because expression involves complex roots, there are no REAL eigenvalues.

Page 279, Problem 8:

• A−λI =

[
−4− λ 3

2 1− λ

]
and the characteristic polynomial is det(A−λI) = (−4−λ)(1−λ)− (3)(2) = λ2 +3λ−10

• The solutions to λ2 + 3λ− 10 = 0 are λ = −5, λ = 2.

Page 280, Problem 25a:

• Because we know that v1 =

[
3/7
4/7

]
is an eigenvector, compute Av1 =

[
.6 .3
.4 .7

] [
3/7
4/7

]
=

[
3/7
4/7

]
. So, λ = 1 must

be the eigenvalue corresponding to v1.

• To find the other eigenvector, find the eignevalues of the matrix: A − λI =

[
.6− λ .3
.4 .7− λ

]
, so the characteristic

polynomial is λ2− 1.3λ+ 0.3 and the solutions to λ2− 1.3λ+ 0.3 = 0 are λ = 1 and λ = .3. Thus, the other eigenvector
must correspond to λ = .3.

• To find the other eigenvector, solve (A − .3I)x = 0 for the general solution:

[
.3 .3 0
.4 .4 0

]
→
[

1 1 0
0 0 0

]
⇒ x =

x2

[
−1
1

]
. Therefore, an eigenvector corresponding to λ = .3 is

[
−1
1

]
.

• Because eigenvectors corresponding to different eigenvalues are linearly independent (and two non-zero linearly inde-

pendent vectors in R2 must also span R2), the set {v1, v2} =

{[
3/7
4/7

]
,

[
−1
1

]}
is a basis for R2.
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Page 280, Problem 25b:

• Solve for c: x0 = v1 + cv2 ⇒ x0−v1 = cv2. So,

[
.5
.5

]
−
[

3/7
4/7

]
=

[
1/14
−1/14

]
= − 1

14

[
−1
1

]
= − 1

14v2. So, c = − 1
14

and x0 = v1 − 1
14v2.

Page 280, Problem 25c:

• To begin, realize that xk = Akx0 = Ak(v1 − 1
14v2) = Akv1 −Ak 1

14v2 = Akv1 − 1
14A

kv2.

• Then, x1 = Av1 − 1
14Av2. Remember the definition of an eigenvector: if v is an eigenvector corresponding to λ, then

Av = λv.

• Because v1 is an eigenvector corresponding to λ = 1 and v2 is an eigenvector corresponding to λ = .3, this equation

can be rewritten as x1 = 1v1 − 1
14 (0.3v2) =

[
3/7
4/7

]
+

[
3/140
−3/140

]
=

[
9/20
11/20

]
.

• Similarly, x2 = A2v1 − 1
14A

2v2 = A(Av1) − 1
14A(Av2) = A(1v1) − 1

14A(.3v2) = Av1 − .3
14Av2 = 1v1 − .3

14 (.3v2) =

v1 − 1
14 (0.3)2v2. This is equal to

[
3/7
4/7

]
+

[
9/1400
−9/1400

]
=

[
87/200
113/200

]
.

• It is clear to see that that the formula for xk = v1 − 1
14 (0.3)kv2.

• As k gets larger (tends to infinity), (0.3)k tends to 0. Therefore, as k →∞, xk → v1.

Section 5.3

Page 286, Problem 6:

A matrix A of the form A = PDP−1 where D is a diagonal matrix consisting of the eigenvalues of A has vectors that

form a basis for the eigenspace in the column of P that correspond to the eigenvalue in D. Therefore, the eigenvalues

of A are 3 and 4. The vectors corresponding to λ = 3 that forms a basis for the eigenspace are columns 1 and 3 of the

matrix P :


 3

0
1

 ,
 −1
−3
0

. The vector corresponding to λ = 4 that forms a basis for the eigenspace is column 2

of the matrix P :


 0

1
0

.

Page 286, Problem 7:

• To diagonalize the matrix, first find the eigenvalues: det(A − λI) = (1 − λ)(−1 − λ) − 6(0) = λ2 − 1 = 0 ⇒ λ = ±1.
Then, find a basis for each eigenspace.

• When λ = 1, (A − I)x = 0 ⇒
[

0 0 0
6 −2 0

]
→
[

1 −1/3 0
0 0 0

]
⇒ x = x2

[
1/3
1

]
= x2

[
1
3

]
. So,

{[
1
3

]}
is a

basis.

• When λ = −1, (A+ I)x = 0⇒
[

2 0 0
6 0 0

]
→
[

1 0 0
0 0 0

]
⇒ x = x2

[
0
1

]
. So,

{[
0
1

]}
is a basis.

• Then, these bases form the columns of P with the associated eigenvalue in the corresponding column of D

(this is very important!): P =

[
1 0
3 1

]
, D =

[
1 0
0 −1

]
.
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Page 287, Problem 12:

• Because the eigenvalues are given, we just need to find a basis for each eigenspace. Note: Because there are only 2
distinct eigenvalues, the sum of the dimensions of the eigenspaces must equal 3 in order for A to be diagonalizable.

• When λ = 2, (A − 2I)x = 0 ⇒

 1 1 1 0
1 1 1 0
1 1 1 0

 →
 1 1 1 0

0 0 0 0
0 0 0 0

 ⇒ x = x2

 −1
1
0

 + x3

 −1
0
1

. So,
 −1

1
0

 ,
 −1

0
1

 is a basis.

• When λ = 5, (A−5I)x = 0⇒

 −2 1 1 0
1 −2 1 0
1 1 −2 0

→
 1 1 −2 0

0 3 −3 0
0 3 −3 0

⇒
 1 1 −2 0

0 1 −1 0
0 0 0 0

⇒
 1 0 −1 0

0 1 −1 0
0 0 0 0

⇒ x =

x3

 1
1
1

. So,


 1

1
1

 is a basis.

• Then, these bases form the columns of P with the associated eigenvalue in the corresponding column of D

(this is very important!): P =

 −1 −1 1
1 0 1
0 1 1

, D =

 2 0 0
0 2 0
0 0 5

.

Page 287, Problem 20:

• Because the matrix is triangular, the eigenvalues are the entries on the diagonal: λ = 2, λ = 3 (each with multiplicity
2). Note: Because there are only 2 distinct eigenvalues, the sum of the dimensions of the eigenspaces must equal 4 in
order for A to be diagonalizable.

• When λ = 2, (A − 2I)x = 0 ⇒


1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
1 0 0 1 0

 →


1 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 0

 ⇒ x = x2


0
1
0
0

 + x3


0
0
1
0

. So,




0
1
0
0

 ,


0
0
1
0


 is a basis.

• When λ = 3, (A − 3I)x = 0 ⇒


0 0 0 0 0
0 −1 0 0 0
0 0 −1 0 0
1 0 0 0 0

 →


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0

 ⇒ x = x4


0
0
0
1

. So,




0
0
0
1


 is a

basis.

• Because the dimension of the basis corresponding to λ = 3 is 1 and the basis corresponding to λ = 2 is 2 and
1 + 2 = 3 6= 4, the matrix is not diagonalizable.

Page 287, Problem 21a:

True or False: A is diagonalizable if A = PDP−1 for some matrix D and some invertible matrix P .

FALSE: The matrix D needs to be a diagonal matrix (the notation D does not automatically denote a diagonal matrix).

Page 287, Problem 21b:

True or False: If Rn has a basis of eigenvectors of A, then A is diaognalizable.

TRUE: Because A is an n×n matrix (stated in the directions), this statement is true and follows from the Diagonalization

Theorem on page 282.
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Section 6.1

Page 336, Problem 2:

• w ·w = 3(3) +−1(−1) +−5(−5) = 9 + 1 + 25 = 35

• x ·w = 6(3) +−2(−1) + 3(−5) = 18 + 2− 15 = 5

• x·w
w·w = 5

35 = 1
7

Page 336, Problem 7:

• ‖w‖ =
√
w ·w =

√
35

Page 336, Problem 10:

• First, compute the norm of the vector:
√
−6(−6) + 4(4) +−3(−3) =

√
36 + 16 + 9 =

√
61

• Then, normalize the vector (multiply by the scalar 1√
61

:

 −6/
√

61

4/
√

61

−3/
√

61


Page 336, Problem 14:

• First find u− z =

 4
−4
−6


• use the formula dist(u, z) = ‖u− z‖ =

√
(u− z) · (u− z) =

√
4(4) +−4(−4) +−6(−6) =

√
68 = 2

√
17

Page 336, Problem 16:

• Vectors are orthogonal if the dot product of the vectors equals zero.

• Compute u · v = 12(2) + 3(−3) +−5(3) = 0. So, the vectors are orthogonal.

Page 336, Problem 17:

• u · v = 3(−4) + 2(1) +−5(−2) + 0(6) = 0. So, the vectors are orthogonal.

Page 337, Problem 20a:

True or False: u · v − v · u = 0

TRUE: By Theorem 1, u · v = v · u, so by substitution u · v − u · v = 0 .

Page 337, Problem 20b:

True or False: For any scalar c, ‖cv‖ = c ‖v‖

FALSE: As stated on page 331, ‖cv‖ = |c| ‖v‖ .

Page 337, Problem 20c:

True or False: If x is orthogonal to every vector in a subspace W , then x is in W⊥.

TRUE: This statement follows from the definition of Orthogonal Complements on page 334 (here, the set that spans W

is W itself).

Page 337, Problem 20d:
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True or False: For any scalar c, ‖u‖2 + ‖v‖2 = ‖u + v‖2 , then uand v are orthogonal.

TRUE: This statement is part of Theorem 2 in this section (the Pythagorean Theorem).

Page 337, Problem 20e:

True or False: For an m× n matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.

TRUE: This statement is part of Theorem 3 of this section.

Page 337, Problem 23:

• u · v = 2(−7) +−5(−4) +−1(6) = 0

• ‖u‖2 = u · u = 2(2) +−5(−5) +−1(−1) = 30

• ‖v‖2 = v · v = −7(−7) +−4(−4) + 6(6) = 101

• ‖u + v‖2 = (u + v) · (u + v) = −5(−5) +−9(−9) + 5(5) = 131

Page 337, Problem 31:

Suppose x is in both W and W⊥. Because W spans W and x ∈W , xis orthogonal to every vector in W (by definition

of orthogonal complements). Because x is orthogonal to every vector in W , that means x · x = 0, which implies x = 0

(by Theorem 1).
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