MATH 221, Spring 2018 - Homework 10 Solutions

Due Tuesday, May 1

Section 5.2

Page 279, Problem 2:

—4 -

A=A = { 6

1__1>\ } and the characteristic polynomial is det(A—\I) = (=4 —\)(1—=X) —(=1)(6) = A2+ 3\ +2

The solutions to the equation A2 + 3\ +2=0are A= —1, A = —2.

Page 279, Problem 4:

2

8-
A_”_{ 3 3-A

] and the characteristic polynomial is det(4 —AI) = (8 = A\)(3—A) — (3)(2) = A2 — 11\ + 18

The solutions to A2 —11A+ 18 =0 are A=9, A = 2.

Page 272, Problem 7:

A=\ = { 5__4/\ 4 E \ } and the characteristic polynomial is det(A — AI) = (5 — A)(4 — ) — (3)(—4) = A2 — 9\ + 32

The solutions to A2 — 9\ + 32 = 0 are found using the quadratic formula \ = 9V ~4(1)(32) =\ = % + 7”12_128.

2(1)
Because expression involves complex roots, there are no REAL eigenvalues.
Page 279, Problem 8:
—4 - A 3 _— A 9
e A—XN = 9 Y and the characteristic polynomial is det(A—AI) = (—4—X)(1—X)—(3)(2) = \*+3X—10

The solutions to A2 +3XA —10 =0 are A = —5, A = 2.

Page 280, Problem 25a:

/7] . . | 6 3 3/7 1 | 3/7 .
4/7 is an eigenvector, compute Av; = 47 a7 | T 7 | So, A = 1 must

be the eigenvalue corresponding to v.

Because we know that vi = [

6= .3

A4 T=A
polynomial is A2 — 1.3\ + 0.3 and the solutions to A2 — 1.3\ +0.3 = 0 are A = 1 and A = .3. Thus, the other eigenvector
must correspond to A = .3.

To find the other eigenvector, find the eignevalues of the matrix: A — Al = [ ], so the characteristic

o
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To find the other eigenvector, solve (A — .31)x = 0 for the general solution:

To [ _11 } . Therefore, an eigenvector corresponding to A = .3 is [ _11 ]

Because eigenvectors corresponding to different eigenvalues are linearly independent (and two non-zero linearly inde-

pendent vectors in R? must also span R?), the set {vi, vo} = { [ i;; ] ; [ _11 } } is a basis for R2.



Page 280, Problem 25b:

e Solve for ¢: xg = vi +cva = X0 — Vi = cva. So, { g]-{i;; ] = { _11//1?4 ] =-4 { -1 ] =—34vs. So,c=—4

1
ﬁVQ.

and xg = vy —
Page 280, Problem 25c:
e To begin, realize that x;, = A¥xq = AF(v; — ijQ) = Akvy, — Ak V2 = Akv, — 1—14Aka.

e Then, x; = Avy — ﬁAvQ. Remember the definition of an eigenvector: if v is an eigenvector corresponding to A, then
Av = Av.

e Because v is an eigenvector corresponding to A = 1 and vs is an eigenvector corresponding to A = .3, this equation
. 1 3/7 3/140 9/20
can be rewritten as x; = 1v; — 75(0.3vy) = 4/7 + —3/140 = 11/20 |
e Similarly, xo = A%vy — —A2V2 = A(Avy) — L A(Avy) = A(1vy L A(Bvy) = Avy — B Avy = 1vy — 2(.3vy) =
14 14 14 14
.. 7 9/1400 87/200
vi — 75(0.3)%v,. This is equal to [ 4§7 } + { _9//1400 } = [ 113//200 }

e It is clear to see that that the formula for x;, = vi — ﬁ(O.?))ka

e As k gets larger (tends to infinity), (0.3)* tends to 0. Therefore, as k — oo, X3 — V.

Section 5.3

Page 286, Problem 6:
A matrix A of the form A = PDP~' where D is a diagonal matrix consisting of the eigenvalues of A has vectors that
form a basis for the eigenspace in the column of P that correspond to the eigenvalue in D. Therefore, the eigenvalues

of A are 3 and 4. The vectors corresponding to A = 3 that forms a basis for the eigenspace are columns 1 and 3 of the

3 -1
matrix P: 01],] —3 . The vector corresponding to A = 4 that forms a basis for the eigenspace is column 2
1 0
0
of the matrix P: 1
0

Page 286, Problem 7:

e To diagonalize the matrix, first find the eigenvalues: det(A — A) = (1 = A)(—=1—=X) —6(0) = A2 —1=0= X = +1.
Then, find a basis for each eigenspace.

Whanr 1w m0o [0 0] 88 0] [ ] e 2] o {[1]) e

basis.

When)\:—l,(A+I)x:0:>[2 8] [ }:x:xg[(l)}So,{[?]}isabasis.

Then, these bases form the columns of P with the associated eigenvalue in the corresponding column of D

(this is very important!): P = [ Lo } D= [ L0 }

3 1 0 —1



Page 287, Problem 12:

e Because the eigenvalues are given, we just need to find a basis for each eigenspace. Note: Because there are only 2
distinct eigenvalues, the sum of the dimensions of the eigenspaces must equal 3 in order for A to be diagonalizable.

1 110 1110 -1 -1
e When A =2, (A-2)x=0= |1 1 1 0| = [0 00 0| =x=u2a| 1 +z3| 0 |. So,
1110 0 0 0O 0 1
-1 -1
1 , 0 is a basis.
0 1
-2 1 1 0 11 -2 0 11 -2 0 10 -1 0
e When A =5, (A-5)x=0= 1 -2 1 0|—=103 -3 0|=1]01 1 0]=]101 -1 0
1 1 -2 0 03 -3 0 00 0 O 0 0 0 O
1 1
zz3 | 1 |. So, 1 is a basis.
1 1
e Then, these bases form the columns of P with the associated eigenvalue in the corresponding column of D
-1 -1 1 2 0 0
(this is very important!): P = 1 0 1{,D=]0 20
0 1 1 0 0 5

Page 287, Problem 20:

e Because the matrix is triangular, the eigenvalues are the entries on the diagonal: A = 2, A = 3 (each with multiplicity
2). Note: Because there are only 2 distinct eigenvalues, the sum of the dimensions of the eigenspaces must equal 4 in
order for A to be diagonalizable.

10000 100 00 0 0
000 00O 000 10 1 0
e When A = 2, (A—-2)x =0 = 00000l 7100000l TX=22g]| o], So,
1 0 01 0 00 0 0O 0 0
0 0
1 0 . .
ol 11 is a basis.
0 0
00 0 00O 10000 0 0
0 -1 0 00 01 000 0 0 .
e When A =3, (A-3)x=0= 00 -100l7 10010 o0l=x=2|, . So, 0 is a
1 0 0 0 O 00 0 0 O 1 1

basis.

e Because the dimension of the basis corresponding to A = 3 is 1 and the basis corresponding to A = 2 is 2 and
14 2 = 3 # 4, the matrix is not diagonalizable.

Page 287, Problem 21a:

True or False: A is diagonalizable if A = PDP~! for some matrix D and some invertible matrix P.

FALSE: The matrix D needs to be a diagonal matrix (the notation D does not automatically denote a diagonal matrix).
Page 287, Problem 21b:

True or False: If R™ has a basis of eigenvectors of A, then A is diaognalizable.

TRUE: Because A is an nxn matrix (stated in the directions), this statement is true and follows from the Diagonalization

Theorem on page 282.



Section 6.1

Page 336, Problem 2:
e w-w=33)+—-1(-1)+-5(-5)=9+1+25=35
e x-w=06(3)+-2(—-1)+3(-5)=1842-15=5
o~ — = =

Page 336, Problem 7:

o W] = W W =35

Page 336, Problem 10:

e First, compute the norm of the vector: \/—6(—6) +4(4) + —3(—3) = /36 + 16 + 9 = /61

—6//61
e Then, normalize the vector (multiply by the scalar \/%: 4/4/61
—3//61
Page 336, Problem 14:
4
e First findu—z=| —4
—6

e use the formula dist(u, z) = [|[u—z|| = /(u —2) - (u—2z) = \/4(4) + —4(—4) + —6(—6) = /68 = 21/17

Page 336, Problem 16:
e Vectors are orthogonal if the dot product of the vectors equals zero.

e Compute u-v =12(2) + 3(—3) + —5(3) = 0. So, the vectors are orthogonal.

Page 336, Problem 17:
e u-v=3(—4)+2(1) + —5(—-2) + 0(6) = 0. So, the vectors are orthogonal.

Page 337, Problem 20a:
True or False: u-v—v-u=0
TRUE: By Theorem 1, u-v = v - u, so by substitutionu-v—-—u-v=20.
Page 337, Problem 20b:
True or False: For any scalar ¢, ||cv| = c||v||
FALSE: As stated on page 331, ||ev| = || ||v]| -
Page 337, Problem 20c:
True or False: If x is orthogonal to every vector in a subspace W, then x is in W=,
TRUE: This statement follows from the definition of Orthogonal Complements on page 334 (here, the set that spans W
is W itself).

Page 337, Problem 20d:



True or False: For any scalar ¢, ||[u||> +||v]* = [u+v|*, then uand v are orthogonal.
TRUE: This statement is part of Theorem 2 in this section (the Pythagorean Theorem).
Page 337, Problem 20e:
True or False: For an m X n matrix A, vectors in the null space of A are orthogonal to vectors in the row space of A.
TRUE: This statement is part of Theorem 3 of this section.

Page 337, Problem 23:
o u-v=2(-7)+—5(-4)+-1(6) =0
o [[u? =u-u=2(2)+-5(-5) + —1(~1) = 30
o [V[P=v-v=—7(=T7) + —4(—4) + 6(6) = 101

o [utv|®=(u+v)  (u+v)=—5(—5)+—9(—9) +5(5) = 131

Page 337, Problem 31:
Suppose x is in both W and W+. Because W spans W and x € W, xis orthogonal to every vector in W (by definition
of orthogonal complements). Because x is orthogonal to every vector in W, that means x - x = 0, which implies x = 0

(by Theorem 1).



