
MATH 221, Spring 2018 - Homework 4 Solutions

Due Tuesday, Februrary 27

Section 1.8

Page 68, Problem 2:

T (u) = Au =

 1
3 0 0
0 1

3 0
0 0 1

3

 3
6
−9

 =

 1
2
−3



T (v) = Av =

 1
3 0 0
0 1

3 0
0 0 1

3

 a
b
c

 =

 a
3
b
3
c
3


Page 68, Problem 4:

We look for x such that b = T (x) = Ax, which is equivalent to solving the system represented by the augmented matrix: 1 −2 3 −6
0 1 −3 −4
2 −5 6 −5

. Row reduction yields

 1 0 0 −17
0 1 0 −7
0 0 1 −1

. Therefore, the solution is unique and x =

 −17
−7
−1

.

Page 68, Problem 9:

We look for x such that 0 = T (x) = Ax, which is equivalent to solving the system represented by the augmented matrix: 1 −3 5 −5 0
0 1 −3 5 0
2 −4 4 −4 0

. Row reduction yields

 1 0 −4 0 0
0 1 −3 0 0
0 0 0 1 0

. Since the system is overdetermined, there is a

free variable (x3) and the solution is given by: x = t


4
3
1
0

, where t is an arbitrary scalar in R.

Page 68, Problem 17:

Linear transformations preserve operations of vector addition and scalar multiplication (page 66). Therefore,

T (2u) = 2T (u) = 2

[
4
1

]
=

[
8
2

]

T (3v) = 3T (v) = 3

[
−1
3

]
=

[
−3
9

]

T (2u + 3v) = T (2u) + T (3v) =

[
8
2

]
+

[
−3
9

]
=

[
5
11

]
Page 69, Problem 23:
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a. When b = 0, then f(x) = mx. So, for any x, y ∈ R and scalars a and b, we have:

f(ax+ by) = m(ax+ by) = m(ax) +m(by) = a(mx) + b(my) = af(x) + bf(y) by properties of Real Numbers.

b. When b 6= 0, f(0) = m(0) + b = b 6= 0, which is a violation of the property that linear transformations always map

zero to zero.

c. f is called a linear function because its graph is a straight line (demonstrating a linear relationship)

Page 69, Problem 26:

a. Refering to the figure on page 47, because q - p is parallel to line M, and p lies on M, a parametric equation of the

line is x = p + t(q− p). Expanding this expression yields x = p + tq− tp⇒ x = p−tp + tq⇒x = (1− t)p + tq.

b. Because x = (1− t)p + tq, T (x) = T ((1− t)p + tq), then by definition of linear transformations,

T ((1− t)p + tq) = T ((1− t)p) + T (tq) = (1− t)T (p) + tT (q)

If p and q are distinct, then this equation is representative of the line segment between T (p) and T (q) (like the equation

found in part a). Otherwise, T (p) = (1− t)T (p) + tT (p) = T (p)− tT (p) + tT (p) = T (p), which is a single point.

(the same is true for T (q))

Page 69, Problem 27:

T (x) = T (su + tv) = sT (u) + tT (v) such that s, t ∈ R

The set of images is Span {T (u), T (v)}. If {T (u), T (v)} is linearly independent, then Span {T (u), T (v)} is a plane

through T (u), T (v), and 0. If {T (u), T (v)} is linearly dependent (one is a multiple of the other and not both zero),

then Span {T (u), T (v)} is a line through 0. If T (u) = T (v) = 0, then Span {T (u), T (v)} is {0}.

Page 69, Problem 30:

Because {v1, . . . ,vn} span Rn, then any x ∈ Rn can be written as x = α1v1 + . . .+ αnvn, for constants α1, . . . , αn ∈ R.

Then, T (x) = T (α1v1 + . . .+ αnvn) = α1T (v1) + . . .+ α1T (vn) = α10 + . . .+ αn0 = 0.

Page 69, Problem 32:

If T were linear then T (cx) = cT (x). Use any counterexample to show this is not true.

T ((0, 1)) = (−2, −4), but T (−1 · (0, 1)) = T ((0, −1)) = (−2, 4) 6= −1 · T ((0, 1)) = (2, 4)

Page 70, Problem 36:

Begin with the hint. We know that because {T (u), T (v)} is linearly dependent, there exist scalars c1 and c2 (not both

zero), such that c1T (u) + c2T (v) = 0. Because T is linear, this becomes T (c1u + c2v) = 0. Let x = c1u + c2v.

Because c1 and c2 are not both zero (one may be 0) and {u, v} is linearly independent (which implies neither u
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or v are 0), c1u + c2v 6= 0. Thus, T (x) = 0 has a nontrivial solution.

Section 1.9

Page 78, Problem 11:

The transformation maps e1 → e1 → −e1 and e2 → −e2 → −e2, which in matrix form is

[
−1 0
0 −1

]
.

This is the same as a rotation through π radians because

[
cosπ − sinπ
sinπ cosπ

]
=

[
−1 0
0 −1

]
Since a linear transformation is completely determined by what it does to the columns of the identity matrix (Theorem

10 of this section), the rotation transformation has the same effect as T on every vector in R2.

Page 78, Problem 15:

The matrix entries are the coefficients of the variables on the right-hand side of the equation:

 2 −4 0
1 0 −1
0 −1 3


Page 78, Problem 22:

In this problem, we will use the fact that T (x) = Ax. Because T : R2 → R3, we know x is a 2 x 1 vector and the matrix

A must be 3 x 2. Therefore the set up of the transformation should be of the form:

T (x) =

 ? ?
? ?
? ?

[ x1
x2

]
=

 2x1 − x2
−3x1 + x2
2x1 − 3x2

. The missing entries of the matrix A are the coefficients of the variables

on the right-hand side of the equation. Therefore: T (x) =

 2 −1
−3 1
2 −3

[ x1
x2

]
. Because we are looking for xsuch that

T (x) =

 0
−1
4

, we solve the system:

 2 −1 0
−3 1 −1
2 −3 4

→
 1 0 1

0 1 2
0 0 0

. Thus, x =

[
1
2

]
.

Page 79, Problem 26:

In order to answer this question, note that the transformation matrix is A =

[
1 −2 3
4 9 −8

]
.

Because there are more columns than rows, the columns must be linearly dependent. Therefore, T is not one-to-one.

If we row-reduce the matrix,

[
1 −2 3
4 9 −8

]
→
[

1 −2 3
0 17 −20

]
, we see that there is a pivot in every row.

Thus, the columns of A span R2. Hence, T is onto.

Page 79, Problem 34:

Using the hint, let u, v ∈ Rp be arbitrary vectors and let c, d ∈ R be arbitrary scalars.
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Because S is linear, T (S(cu + dv)) = T (cS(u) + dS(v)). Because T is linear, T (cS(u) + dS(v)) = cT (S(u)) + dT (S(v)).

Therefore, x 7→ T (S(x)) is a linear transformation.
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