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Section 2.1

4. If a P R satisfies a ¨ a “ a, prove that either a “ 0 or a “ 1.

Proof. Suppose that a is nonzero. We may then invoke theorem 2.1.2 to say that
a “ 1. �

6. Use the argument in the proof of Theorem 2.1.4 to show that there does not exist a
rational number s such that s2 “ 6.

Proof. Suppose that there exist integers p and q with no nontrivial common factors
such that pp{qq2 “ 6. Since p2 “ 6q2 we see that p2 is a multiple of both 2 and 3.
This implies that p is also a multiple of 2 and 3 since these are both prime numbers.
(If a prime number divides the product of two numbers, then it must divide at least
one of those two numbers.) Since p is a multiple of 2 and 3 there is some natural
number m P N such that p “ 6m and thus 36m2 “ 6q2 so that 6m2 “ q2. As
above this implies that q is a multiple of 2 and 3, contradicting that q and p have
no common factors. Thus we may conclude that no such p and q exist. �

9. Let K :“ t s` t
?

2 | s, t P Q u. Show that K satisfies the following:

(a) If x1, x2 P K, then x1 ` x2 P K and x1x2 P K.

Proof. By assumption there exist p1, p2, q1, q2 P Q such that x1 “ p1 ` q1
?

2
and x2 “ p2 ` q2

?
2. We thus have the following:

x1 ` x2 “ p1 ` q1
?

2` p2 ` q2
?

2 “ pp1 ` p2q ` pq1 ` q2q
?

2,

and

x1x2 “ pp1 ` q1
?

2qpp2 ` q2
?

2q “ pp1p2 ` 2q1q2q ` pp1q2 ` p2q1q
?

2.

Since Q is a closed under multiplication and addition these are both elements
of K. �



(b) If x ‰ 0 and x P K, then 1{x P K.

Proof. As above, let x “ p` q
?

2. We then have:

1

x
“

1

p` q
?

2
“

1

p` q
?

2
¨
p´ q

?
2

p´ q
?

2
“
p´ q

?
2

p2 ` 2q2
“

p

p2 ` 2q2
´

q

p2 ` 2q2

?
2,

which is also an element of K. �

20. (a) If 0 ă c ă 1, show that 0 ă c2 ă c ă 1.

Proof. We note that c ‰ 0 since 0 ă c, and thus 0 ă c2 by theorem 2.1.8. We
may then multiply c ă 1 by c to get c2 ă c by theorem 2.1.7. Combining all
these inequalities with the same theorem lets us say 0 ă c2 ă c ă 1. �

(b) If 1 ă c, show that 1 ă c ă c2.

Proof. We may use theorem 2.1.7 similarly the above to say that 1 ă c implies
c ă c2 and thus 1 ă c ă c2. �

21. (a) Prove there is no n P N such that 0 ă n ă 1. (Use the Well-Ordering Property of
N.)

Proof. Let S be the set of all n P N such that 0 ă n ă 1. By well-ordering, if
this set is nonempty then it must have a least element. Let us call this element
s. We then have that 0 ă s ă 1 implies 0 ă s2 ă s ă 1 by the above result.
Since s is a natural number so is s2. However, this contradicts our assumption
that s was the least element of S. Thus we may conclude that S is empty. �

(b) Prove that no natural number can be both even and odd.

Proof. A number k is even if there is some natural number n such that k “ 2n
and odd if there is a natural number n1 such that k “ 2n1 ` 1. Supposing k
is both even and odd we must have the existence of natural numbers n and n1

such that 2n “ 2n1 ` 1 or equivalently 2pn ´ n1q “ 1 and thus 0 ă n ´ n1 ă 1.
By the above proof this cannot happen. �

23. If a ą 0, b ą 0, and n P N, show that a ă b if and only if an ă bn.

Proof. We note that this is immediate in the case that n is one. Now suppose that
a ă b if and only if an ă bn for some n. Suppose first that a ă b. This implies
an ă bn by the above and further that a ¨ an ă a ¨ bn and a ¨ bn ă b ¨ bn which give
us an`1 ă bn`1. Conversely, suppose that b ď a. Our inductive hypothesis states
that this implies bn ď an and thus bn`1 ď an`1 by the same logic as above. This
completes the inductive step, and we may conclude that the proposition holds for
all n. �



Section 2.2

3. If x, y, z P R and x ď z, show that x ď y ď z if and only if |x´ y|` |y ´ z| “ |x´ z|.
Interpret this geometrically.

Proof. Suppose x ď y ď z. We thus have that |x´ y| “ y ´ x, |y ´ z| “ z ´ y, and
|x´ z| “ z ´ x. Therefore:

|x´ y|` |y ´ z| “ y ´ x` z ´ y “ z ´ x “ |x´ z| .

Conversely, since x ď z we have |x´ z| “ z ´ x, and thus |x´ y|` |y ´ z| “ z ´ x.
We consider three overlapping cases: y ď x, x ď y ď z, and z ď y. Supposing y ď x,
we would then have x ´ y ` z ´ y “ z ´ x implying x “ y. Similarly, z ď y will
imply that z “ y. We thus have that x ď y ď z in every case.

This makes sense geometrically since absolute value is a measure of the line segments
connecting two points. When y is between x and z the line segment from x to z is
precisely the concatenation of the line segments from x to y and y to x. (Allowing
of course for the possibility that a line segment is merely a point.) �

5. If a ă x ă b and a ă y ă b, show that |x´ y| ă b´ a. Interpret this geometrically.

Proof. From the second equation it follows that ´b ă ´y ă ´a. We may then
subtract these two inequalities to get ´pb ´ aq “ a ´ b ă x ´ y ă b ´ a. We may
then apply theorem 2.2.2 to say that |x´ y| ă b´ a.

This result can be interpreted to mean that given any two points inside a finite
interval, the length of the segment joining those two points cannot be longer than
the length of the interval. �

7. Find all x P R that satisfy the equation |x` 1|` |x´ 2| “ 7.

We consider three intervals: p´8,´1s, p´1, 2s, and p2,8q. In the first we have p´x´
1q ` p2´ xq “ 7 ùñ x “ ´3, in the second we have px` 1q ` p2´ xq “ 7, which has
no solution, and in the third we have px` 1q ` px´ 2q “ 7 ùñ x “ 4. Thus both ´3
and 4 are solutions.

12. Find all x P R that satisfy the inequality 4 ă |x` 2|` |x´ 1| ă 5.

We consider three intervals: p´8,´2s, p´2, 1s, and p1,8q. In the first we have 4 ă
p´x´2q`p1´xq ă 5 ùñ ´3 ă x ă ´5{2, in the second we have 4 ă px`2q`p1´xq ă
5, which has no solution, and in the third we have 4 ă px`2q`px´1q ă 5 ùñ 3{2 ă
x ă 2. This gives a final solution set of p´3,´5{2q Y p3{2, 2q.

14. Determine and sketch the set of pairs px, yq in RˆR that satisfy:

(a) |x| “ |y|: The solution set here is the lines x “ y and x “ ´y, i.e. t px, yq P R2 | x “ ˘y u.

(b) |x| ` |y| “ 1: There are four cases based on the sign of x and y. In each we get
a line segment connecting two of the points in p1, 0q, p0, 1q, p´1, 0q, p0,´1q in a
cycle.



(c) |xy| “ 2: We have the two cases where x and y have matching or opposite signs,
giving the hyperbolas y “ 2{x and y “ ´2{x respectively.

(d) |x|´ |y| “ 2: This is similar to the first case. The solution is clear if we do a case
analysis on the sign of x to get x “ |y| ` 2 and x “ ´ |y| ´ 2 when x is positive
and negative respectively.

16. Let ε ą 0 and δ ą 0, and a P R. Show that Vεpaq X Vδpaq and Vεpaq Y Vδpaq are
γ-neighborhoods of a for appropriate values of γ.

Proof. Let us first fix values ε, δ ą 0 and a P R. Unpacking the definition of
neighborhoods gives us Vεpaq :“ tx P R | |x´ a| ă ε u and likewise for δ. We then
have:

Vεpaq Y Vδpaq “ tx P R | |x´ a| ă ε or |x´ a| ă δ u ,

and:
Vεpaq X Vδpaq “ tx P R | |x´ a| ă ε and |x´ a| ă δ u .

Letting γ1 “ maxtε, δu and γ2 “ mintε, δu it is clear that:

Vεpaq Y Vδpaq ´ t x P R | |x´ a| ă γ1 u :“ Vγ1paq,

and:
Vεpaq X Vδpaq ´ t x P R | |x´ a| ă γ2 u :“ Vγ2paq.

�

19. Show that if a, b, c P R, then the “middle number” is:

midta, b, cu “ mintmaxta, bu,maxtb, cu,maxtc, auu.

Explanation. Without loss of generality suppose that a ď b ď c. (If it were otherwise,
we could simply relabel our variables.) We then have maxta, bu “ b, maxtb, cu “ c,
and maxtc, au “ c. Further mintb, c, cu “ b. This conforms with what we think the
“middle number” should be. We note that by using weak inequality we avoid the
need to explicitly consider edge cases. You should prove to yourself that the above
explanation still makes sense when any of the variables are equal. �


