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Section 2.3

3. Let S3 :“ t1{n|n P Nu. Show that supS3 “ 1 and inf S3 ě 0.

Proof. For supS3 “ 1, we first note that 1 ě 1{n for all n P N, and thus 1 is an
upper bound of S3. Since 1 P S3 this proves that supS3 “ 1.

For inf S3 ě 0 we merely note that 1{n is positive for all n and consequently 0 is a
lower bound of S3. It follows immediately that the infimum of S3 is greater than or
equal to 0. �

4. Let S4 :“ t1´ p´1qn{n|n P Nu. Find inf S4 and supS4.

Proof. We note that 1´p´1q1{1 “ 2 and 1´p´1q2{2 “ 1{2 are both in S4. Further,
s ď 2 for any s P S4 since |p´1qn{n| “ 1{n ď 1. Thus 2 is an upper bound of S4

and since it is also contained in S4 it must be the supremum. Similarly, for all n
greater than one we have |p´1qn{n| “ 1{n ď 1{2 and consequently that s ě 1{2 for
all s P S4. Thus 1{2 is a lower bound and further the infimum of S4. �

5c. Find the infimum and supremum, if they exist, of the set:

C :“ tx P R|x ă 1{xu.

Proof. We note that for any negative number x less than 1 x ă 1{x and so it follows
inf C does exist. Similarly for any positive number x greater than or equal to 1
x ě 1{x and so all such x are upper bounds of C. We note further x ă 1{x for any x
in p0, 1q. Thus if we take any x ă 1 we have that x`p1´xq{2 ă 1 and consequently
in S4. This shows that no x ă 1 can be an upper bound of S4 and further that 1 is
the supremum. �

6. Let S be a nonempty subset of R that is bounded below. Prove that inf S “ ´ supt´s|s P Su.

Proof. Let w be the infimum of S. This means that w ď s for all s P S and for
all w1 P R such that w1 ď s for all s P S we have w1 ď w. We may multiply all
of the above inequalities by negative one to get that ´w ě ´s for all s P S and if
´w1 ě ´s for all s P S then ´w1 ě ´w. This is precisely the statement that ´w is
the supremum of t´s|s P Su. �



7. If a set S Ď R contains one of its upper bounds, show that this upper bound is the
supremum of S.

Proof. Let u P S be an upper bound of S and u1 P R be another not necessarily
distinct upper bound of S. Since u P S we immediately have that u1 ě u and thus
that u is the supremum of S. �

8. Let S Ď R be nonempty. Show that u P R is an upper bound of S if and only if the
conditions t P R and t ą u imply t R S.

Proof. Suppose that u is an upper bound of S. Since u ě s for all s P S we have
immediately that u ă t implies t R S. Conversely suppose we have an element u P R
such that if u ă t then t R S for all t P R. The contrapositive gives us that if s P S
then s ď u implying that u is an upper bound of S. �

11. Let S be a bounded set in R and let S0 be a nonempty subset of S. Show that
inf S ď inf S0 ď supS0 ď supS.

Proof. Given s P S0 we have s P S and consequently inf S ď s implying that inf S
is a lower bound of S0 and that inf S ď inf S0. An analogous argument shows that
supS0 ď supS. Since S0 is nonempty we may take s P S0. (We note that the above
proof did not explicitly require that S or S0 be nonempty. The above inequalities
will hold if S0 is empty, however the following will not unless S is also empty.) We
then have inf S0 ď s ď supS0. The inequality we wish to show is then a result of
using the transitive property several times. �

14. Let S be a set that is bounded below. Prove that a lower bound w of S is the infimum
of S if and only if for any ε ą 0 there exists t P S such that t ă w ` ε.

Proof. Let w be the infimum of S and ε ą 0, then w ă w ` ε implying that w ` ε
is not a lower bound of S and thus that there is some t P S such that t ă w ` ε.
Conversely, let w and w1 be lower bounds of S such that w ď w1. We then have that
there is some ε ě 0 such that w ` ε “ w1. Since w1 is a lower bound, it cannot be
the case that ε ą 0 otherwise we would have that there is some t greater than w1

contradicting that it is a lower bound. We are thus forced to conclude that ε “ 0
implying that w “ w1 and that w is the infimum of S. �



Section 2.4

3. Let S Ď R be nonempty. Prove that if a number u in R has the properties: (i) for
every n P N the number u´ 1{n is not an upper bound of S, and (ii) for every number
n P N the number u` 1{n is an upper bound of S, then u “ supS.

Proof. Suppose we have some s P R such that u ă s, we then have the existence of
some ε ą 0 such that u` ε “ s. Further the Archimedean property gives us n such
that u ` 1{n ă u ` ε. Since u ` 1{n is an upper bound of S it must be the case
that s R S. This is equivalent to saying that given an s P S it must be the case that
s ď u and thus that u is an upper bound of S.

Further, given an ε ą 0 we have an n P N such that 1{n ă ε and consequently
u ´ ε ă u ´ 1{n and thus that there exists some s P S such that u ´ ε ă s since
u´ 1{n is not an upper bound of S. Since u is an upper bound this is equivalent to
saying that u is the supremum of S. �

4. Let S be a nonempty bounded set in R.

(a) Let a ą 0, and let aS :“ tas|s P Su. Prove that:

infpaSq “ a inf S, suppaSq “ a supS.

Proof. Let w :“ supS. We have w ě s for all s P S and if w1 ě s for all
s P S then w1 ě w. Since a is positive we may multiple through each of these
inequalities to say respectively that aw is an upper bound of aS and if aw1 is
an upper bound of aS then aw1 ě aw implying that aw is the supremum of aS.

An analogous argument will prove the statement about infima. �

(b) Let b ă 0, and let bS :“ tbs|s P Su. Prove that:

infpbSq “ a supS, suppbSq “ b inf S.

Proof. This proof proceeds as above, however this time multiplication by b
reverses the direction of each inequality. Thus a statement about suprema
becomes a statement about infima and vice versa. �

10. Perform the computations in (a) and (b) of the preceding exercise for the function
h :XˆY ÑR defined by:

hpx, yq :“

#

0 if x ă y,

1 if x ě y.

(a) fpxq :“ supthpx, yq|y P Y u “ 1 since for any x we may find a y such that x ď y,
and consequently inftfpxq|x P Xu “ 1.

(b) gpxq :“ infthpx, yq|x P Xu “ 0 since for any y we may find a x such that x ă y,
and consequently suptgpxq|x P Xu “ 0.



14. If y ą 0, show that there exists n P N such that 1{2n ă y.

Proof. By a corollary to the Archimedean property there exists an n P N such that
1{n ă y. Further 1{2n ă 1{n since n ă 2n. �

17. Modify the argument in Theorem 2.4.7 to show that there exists a positive real number
u such that u3 “ 2.

Proof. Analogously to the proof in the book we define S :“ ts P R|0 ď s, s3u. The
set is again bounded above by 2 so we may apply the supremum property to say
that S has supremum x P R. Supposing x3 ă 2 we may choose n so that:

1

n
ă

2´ x3

3x2 ` 3x` 1
, implying:

1

n

`

3x2
` 3x` 1

˘

ă 2´ x3,

and thus:

ˆ

x`
1

n

˙3

“ x3
`

3x2

n
`

3x

n2
`

1

n3
ă x3

`
1

n

`

3x2
` 3x` 1

˘

ă 2,

contradicting that x is the supremum.

Supposing instead that x3 ą 2 we may choose m so that:

1

m
ă

x3 ´ 2

3x2
, implying:

1

m
3x2

ă x3
´ 2,

and thus:

ˆ

x´
1

m

˙3

“ x3
´

3x2

m
`

3x

m2
´

1

m3
ą x3

´
3x2

m
ą 2,

again contradicting that x is the supremum.

We may thus conclude that x3 “ 2. �

19. If u ą 0 is any real number and x ă y, show that there exists a rational number r such
that x ă ru ă y. (Hence the set tru|r P Qu is dense in R.)

Proof. The case where u “ 1 was shown in the book. From that theorem we have
some r1 such that x ă r1 ă y. Letting r “ r1{u we then have x ă ru ă y. �


