MATH 301 Homework 5 Answer Key Matthew Kousoulas April 2, 2018

Section 2.5

7. Let $I_n := [0, 1/n]$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} I_n = \{0\}$.

Proof. We note first that $0 \in [0, 1/n]$ for all $n \in \mathbb{N}$ implying that $\{0\} \subseteq \bigcap_{n=1}^{\infty} I_n$. Conversely let $a \in \bigcap_{n=1}^{\infty} I_n$. This implies that $a \in [0, 1/n]$ for all $n \in \mathbb{N}$ by the definition of intersections. By the definition of intervals we then have that $0 \leq a \leq 1/n$ for all $n \in \mathbb{N}$. Clearly *a* cannot be less than zero. Supposing on the other hand that *a* were greater than zero then there would be some $n \in \mathbb{N}$ such that 1/n < a by corollary to the Archimedean property; thus *a* must be zero. This implies that $\bigcap_{n=1}^{\infty} I_n \subseteq \{0\}$.

8. Let $J_n := (0, 1/n)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} J_n = \emptyset$.

Proof. Considering an element $a \in \bigcap_{n=1}^{\infty} J_n$, we must have $a \in (0, 1/n)$ as before. However, this time the inequality is strict giving us that 0 < a < 1/n for all $n \in \mathbb{N}$. Since no real number can satisfy this (using reasoning analogous to the above problem) we must conclude that a does not exist and hence $\bigcap_{n=1}^{\infty} J_n$ is empty. Since the empty set is unique, this is all we needed to show.

9. Let $K_n := (n, \infty)$ for $n \in \mathbb{N}$. Prove that $\bigcap_{n=1}^{\infty} K_n = \emptyset$.

Proof. We proceed as before. Let $a \in \bigcap_{n=1}^{\infty} K_n$. It must be the case that n < a for all $n \in \mathbb{N}$. However, this is a clear violation of the Archimedean property which states that for any real number there is some natural number greater than it. We again conclude that a cannot exist as such and thus that $\bigcap_{n=1}^{\infty} K_n$ is empty.

14. Show that if $a_k, b_k \in \{0, 1, ..., 9\}$ and if:

$$\frac{a_1}{10} + \frac{a_2}{10^2} + \dots + \frac{a_n}{10^n} = \frac{b_1}{10} + \frac{b_2}{10^2} + \dots + \frac{b_n}{10^m} \neq 0,$$

then n = m and $a_k = b_k$ for $k = 1, \ldots, n$.

Proof. We may assume that $a_n \neq 0$. If n > m, then multiply by 10^n to get $10p + a_n = 10q$ where $p, q \in \mathbb{N}$, so that $a_n = 10(q - p)$. Since $q - p \in \mathbb{Z}$ while a_n is one of the digits $0, 1, \ldots, 9$, it follows that $a_n = 0$, a contradiction. Therefore $n \leq m$, and a similar argument shows that $m \leq n$; therefore n = m.

Repeating the above argument with n = m, we obtain $10p + a_n = 10q + b_n$, so that $a_n - b_n = 10(q - p)$, whence it follows that $a_n = b_n$. If this argument is repeated, we conclude that $a_k = b_k$ for k = 1, ..., n.

17. What rationals are represented by the periodic decimals:

 $1.25137 \cdots 137 \cdots$ and $35.14653 \cdots 653 \cdots$? 31253/24975 and 3511139/99900 respectively.

Section 3.1

5. Use the definition of the limit of a sequence to establish the following limits.

(a)
$$\lim\left(\frac{n}{n^2+1}\right) = 0$$
:

Proof. Letting $\varepsilon > 0$ be arbitrary, we define $K(\varepsilon) \ge 1/\varepsilon$. (Any natural number greater than $1/\varepsilon$ will suffice, and the Archimedean property guarantees that at least one exists.) Then if $n \ge K(\varepsilon)$, $n \ge 1/ep$ and consequently:

$$0 < \frac{n}{n^2 + 1} < \frac{n}{n^2} = 1/n < \varepsilon$$

- (b) $\lim \left(\frac{2n}{n+1}\right) = 2$: *Proof.* Letting $\varepsilon > 0$ put $K \ge 2/\varepsilon$. Then n > K implies $n > 2/\varepsilon$ and thus $|2n/(n+1)-2| = 2/(n+1) < 2/n < \varepsilon$.
- (c) $\lim \left(\frac{3n+1}{2n+5}\right) = \frac{3}{2}$:

Proof. Letting $\varepsilon > 0$ put $K \ge 13/4\varepsilon$. Then n > K implies $n > 13/4\varepsilon$ and thus $|(3n+1)/(2n+5) - 3/2| = 13/(4n+10) < 13/4n < \varepsilon$.

(d) $\lim \left(\frac{n^2 - 1}{2n^2 + 3}\right) = \frac{1}{2}$:

Proof. Letting $\varepsilon > 0$ put $K \ge 5/4\varepsilon$. Then n > K implies $n > 5/4\varepsilon$ and thus $|(n^2 - 1)/(2n^2 + 3) - 1/2| = 5/(4n^2 + 6) < 5/4n^2 \le 5/4n < \varepsilon$.

- 7. Let $x_n := 1/\ln(n+1)$ for $n \in \mathbb{N}$.
 - (a) Use the definition of limit to show that $\lim(x_n) = 0$.

Proof. Letting $\varepsilon > 0$ put $K \ge e^{1/\varepsilon} - 1$. Then $\ln(n+1) \ge 1/\varepsilon$ and consequently $0 < 1/\ln(n+1) \le \varepsilon$ for all n > K. Therefore $\lim(x_n) = 0$.

- (b) Find a specific value of K(ε) as required in the definition of limit for each of (i) ε = 1/2, and (ii) ε = 1/10.
 For ε = 1/2, e^{1/ε} ≈ 6.3 so let K(1/2) = 7, and for ε = 1/10, e^{1/ε} ≈ 22025.5 so let K(1/10) = 22026.
- 8. Prove that $\lim(x_n) = 0$ if and only if $\lim(|x_n|) = 0$. Give an example to show that the convergence of $(|x_n|)$ need not imply the convergence of (x_n) .

Proof. This follows from the fact that $||x_n|| = |x_n|$. For any $\varepsilon > 0$ we have that $||x_n|| < \varepsilon$ if and only if $|x_n| < \varepsilon$. However, if $(|x_n|)$ converges to a value other than zero, say as in the sequence $(|(-1)^n|)$, which converges to one, it is not the case that $((-1)^n)$ also converges.

10. Prove that if $\lim(x_n) = x$ and if x > 0, then there exists a natural number M such that $x_n > 0$ for all $n \ge M$.

Proof. Let $\varepsilon = x/2$, by the definition of limit there exists an $M \in \mathbb{N}$ such that $|x_n - x| < x/2$ for all $n \ge M$. Thus $-x/2 < x_n - x < x/2$ or $0 < x/2 < x_n$ for all such n.

17. Show that $\lim(2^n/n!) = 0$.

Proof. We note that:

$$\frac{2^n}{n!} = \frac{2 \cdot 2 \cdot 2 \cdots 2}{1 \cdot 2 \cdot 3 \cdots n} = 2 \cdot 1 \cdot \frac{2}{3} \cdot \frac{2}{4} \cdots \frac{2}{n} \le 2 \cdot \frac{2}{3} \cdot \frac{2}{3} \cdots \frac{2}{3} = 2\left(\frac{2}{3}\right)^{n-2}$$

Further,

$$\frac{2^n}{n!} = \frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 2}{1 \cdot 2 \cdot 3 \cdot n} \ge \frac{2 \cdot 2 \cdot 2 \cdot 2}{1 \cdot 2 \cdot 3 \cdot n} \cdot \frac{2}{n+1} = \frac{2^{n+1}}{(n+1)!}.$$

Therefore, letting $\varepsilon > 0$ we may define $K \ge \log_{2/3}(\varepsilon/2) + 2$ to get $2^n/n! \le \varepsilon$ for all n > K.

18. If $\lim(x_n) = x > 0$, show that there exists a natural number K such that if $n \ge K$, then $\frac{1}{2}x < x_n < 2x$.

Proof. By taking $\varepsilon := \min\{x - \frac{1}{2}x, 2x - x\}$ (this value is positive since x is positive) there must exist a K such that $|x_n - x| < \varepsilon$ implying:

$$\frac{1}{2}x - x \leqslant -\varepsilon < x_n - x < \varepsilon \leqslant 2x - x,$$

and consequently $\frac{1}{2}x < x_n < 2x$ for all $n \ge K$.