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Section 2.5

7. Let In :“ r0, 1{ns for n P N. Prove that
Ş8

n“1 In “ t0u.

Proof. We note first that 0 P r0, 1{ns for all n P N implying that t0u Ď
Ş8

n“1 In.
Conversely let a P

Ş8

n“1 In. This implies that a P r0, 1{ns for all n P N by the
definition of intersections. By the definition of intervals we then have that 0 ď a ď
1{n for all n P N. Clearly a cannot be less than zero. Supposing on the other hand
that a were greater than zero then there would be some n P N such that 1{n ă a
by corollary to the Archimedean property; thus a must be zero. This implies that
Ş8

n“1 In Ď t0u. We may thus conclude
Ş8

n“1 In “ t0u. �

8. Let Jn :“ p0, 1{nq for n P N. Prove that
Ş8

n“1 Jn “ ∅.

Proof. Considering an element a P
Ş8

n“1 Jn, we must have a P p0, 1{nq as before.
However, this time the inequality is strict giving us that 0 ă a ă 1{n for all n P
N. Since no real number can satisfy this (using reasoning analogous to the above
problem) we must conclude that a does not exist and hence

Ş8

n“1 Jn is empty. Since
the empty set is unique, this is all we needed to show. �

9. Let Kn :“ pn,8q for n P N. Prove that
Ş8

n“1Kn “ ∅.

Proof. We proceed as before. Let a P
Ş8

n“1Kn. It must be the case that n ă a
for all n P N. However, this is a clear violation of the Archimedean property which
states that for any real number there is some natural number greater than it. We
again conclude that a cannot exist as such and thus that

Ş8

n“1Kn is empty. �

14. Show that if ak, bk P t0, 1, . . . , 9u and if:

a1
10
`

a2
102

` ¨ ¨ ¨ `
an
10n

“
b1
10
`

b2
102

` ¨ ¨ ¨ `
bn

10m
‰ 0,

then n “ m and ak “ bk for k “ 1, . . . , n.

Proof. We may assume that an ‰ 0. If n ą m, then multiply by 10n to get 10p`an “
10q where p, q P N, so that an “ 10pq ´ pq. Since q ´ p P Z while an is one of the
digits 0, 1, . . . , 9, it follows that an “ 0, a contradiction. Therefore n ď m, and a
similar argument shows that m ď n; therefore n “ m.

Repeating the above argument with n “ m, we obtain 10p` an “ 10q ` bn, so that
an´ bn “ 10pq´ pq, whence it follows that an “ bn. If this argument is repeated, we
conclude that ak “ bk for k “ 1, . . . , n. �



17. What rationals are represented by the periodic decimals:

1.25137 ¨ ¨ ¨ 137 ¨ ¨ ¨ and 35.14653 ¨ ¨ ¨ 653 ¨ ¨ ¨?

31253{24975 and 3511139{99900 respectively.



Section 3.1

5. Use the definition of the limit of a sequence to establish the following limits.

(a) lim

ˆ

n

n2 ` 1

˙

“ 0:

Proof. Letting ε ą 0 be arbitrary, we define Kpεq ě 1{ε. (Any natural number
greater than 1{ε will suffice, and the Archimedean property guarantees that at
least one exists.) Then if n ě Kpεq, n ě 1{ep and consequently:

0 ă
n

n2 ` 1
ă

n

n2
“ 1{n ă ε.

�

(b) lim

ˆ

2n

n` 1

˙

“ 2:

Proof. Letting ε ą 0 put K ě 2{ε. Then n ą K implies n ą 2{ε and thus
|2n{pn` 1q ´ 2| “ 2{pn` 1q ă 2{n ă ε. �

(c) lim

ˆ

3n` 1

2n` 5

˙

“
3

2
:

Proof. Letting ε ą 0 put K ě 13{4ε. Then n ą K implies n ą 13{4ε and thus
|p3n` 1q{p2n` 5q ´ 3{2| “ 13{p4n` 10q ă 13{4n ă ε. �

(d) lim

ˆ

n2 ´ 1

2n2 ` 3

˙

“
1

2
:

Proof. Letting ε ą 0 put K ě 5{4ε. Then n ą K implies n ą 5{4ε and thus
|pn2 ´ 1q{p2n2 ` 3q ´ 1{2| “ 5{p4n2 ` 6q ă 5{4n2 ď 5{4n ă ε. �

7. Let xn :“ 1{ lnpn` 1q for n P N.

(a) Use the definition of limit to show that limpxnq “ 0.

Proof. Letting ε ą 0 put K ě e1{ε ´ 1. Then lnpn` 1q ě 1{ε and consequently
0 ă 1{ lnpn` 1q ď ε for all n ą K. Therefore limpxnq “ 0. �

(b) Find a specific value of Kpεq as required in the definition of limit for each of (i)
ε “ 1{2, and (ii) ε “ 1{10.

For ε “ 1{2, e1{ε « 6.3 so let Kp1{2q “ 7, and for ε “ 1{10, e1{ε « 22025.5 so let
Kp1{10q “ 22026.

8. Prove that limpxnq “ 0 if and only if limp|xn|q “ 0. Give an example to show that the
convergence of p|xn|q need not imply the convergence of pxnq.

Proof. This follows from the fact that ||xn|| “ |xn|. For any ε ą 0 we have that
||xn|| ă ε if and only if |xn| ă ε. However, if p|xn|q converges to a value other than
zero, say as in the sequence p|p´1qn|q, which converges to one, it is not the case that
pp´1qnq also converges. �



10. Prove that if limpxnq “ x and if x ą 0, then there exists a natural number M such
that xn ą 0 for all n ěM .

Proof. Let ε “ x{2, by the definition of limit there exists an M P N such that
|xn ´ x| ă x{2 for all n ě M . Thus ´x{2 ă xn ´ x ă x{2 or 0 ă x{2 ă xn for all
such n. �

17. Show that limp2n{n!q “ 0.

Proof. We note that:

2n

n!
“

2 ¨ 2 ¨ 2 ¨ ¨ ¨ 2

1 ¨ 2 ¨ 3 ¨ ¨ ¨n
“ 2 ¨ 1 ¨

2

3
¨

2

4
¨ ¨ ¨

2

n
ď 2 ¨

2

3
¨

2

3
¨ ¨ ¨

2

3
“ 2

ˆ

2

3

˙n´2

.

Further,
2n

n!
“

2 ¨ 2 ¨ 2 ¨ ¨ ¨ 2

1 ¨ 2 ¨ 3 ¨ ¨ ¨n
ě

2 ¨ 2 ¨ 2 ¨ ¨ ¨ 2

1 ¨ 2 ¨ 3 ¨ ¨ ¨n
¨

2

n` 1
“

2n`1

pn` 1q!
.

Therefore, letting ε ą 0 we may define K ě log2{3pε{2q ` 2 to get 2n{n! ď ε for all
n ą K. �

18. If limpxnq “ x ą 0, show that there exists a natural number K such that if n ě K,
then 1

2
x ă xn ă 2x.

Proof. By taking ε :“ mintx´ 1
2
x, 2x´ xu (this value is positive since x is positive)

there must exist a K such that |xn ´ x| ă ε implying:

1

2
x´ x ď ´ε ă xn ´ x ă ε ď 2x´ x,

and consequently 1
2
x ă xn ă 2x for all n ě K. �


