MATH 301 Homework 8 Answer Key Matthew Kousoulas May 3, 2018

Section 3.4

9. Suppose that every subsequence of $X = (x_n)$ has a subsequence that converges to 0. Show that $\lim X = 0$.

Proof. Suppose that x_n does not converge to 0, then there is some ε_0 and a subsequence x_{n_k} such that $|x_{n_k}| \ge \varepsilon_0 > 0$ for all k. This subsequence cannot have a subsequence that converges to 0 by construction.

11. Suppose that $x_n \ge 0$ for all $n \in \mathbb{N}$ and that $\lim ((-1)^n x_n)$ exists. Show that (x_n) converges.

Proof. Note that $x_n = |(-1)^n x_n|$ and thus $\lim(x_n) = |\lim((-1)^n x_n)|$. Further, since $(-1)^n x_n$ has strictly positive and strictly negative sequences we have $\liminf((-1)^n x_n) \le 0 \le \limsup((-1)^n x_n)$. Because $(-1)^n x_n$ converges we have that \liminf and \limsup must coincide the limit of both $(-1)^n x_n$ and x_n must be zero.

17. Alternate the terms of the sequences (1 + 1/n) and (-1/n) to obtain the sequence (x_n) given by

 $(2, -1, 3/2, -1/2, 4/3, -1/3, 5/4, -1/4, \ldots).$

Determine the value of $\limsup(x_n)$ and $\liminf(x_n)$. Also find $\sup\{x_n\}$ and $\inf\{x_n\}$.

Proof. Note that 1 + 1/n > -1/m for any $n, m \in \mathbb{N}$ and further $\lim(1 + 1/n) = 1$ and $\lim(-1/n) = 0$. Let x_{n_k} be an arbitrary subsequence. By construction x_{n_k} must take values exclusively from (1 + 1/n) and (-1/n). Thus if x_{n_k} does not have a tail in one of these sequences it must have a subsequence in both and thus must diverge. Consequently the set of subsequential limits is $\{1, 0\}$ and theorem 3.4.11 tells us that $\lim \inf(x_n) = 0$ and $\limsup(x_n) = 1$. Also since (1 + 1/n) is decreasing and (-1/n)is increasing we also have that $\sup\{x_n\} = 2$ and $\inf\{x_n\} = -1$.

19. Show that if (x_n) and (y_n) are bounded sequences, then

$$\limsup(x_n + y_n) \le \limsup(x_n) + \limsup(y_n).$$

Give an example in which the two sides are not equal.

Proof. Let $v > \limsup(x_n)$ and $u > \limsup(y_n)$, then there are finitely many n such that $v > x_n$ and $v > y_n$ and consequently $u + v > x_n + y_n$. Thus $y + v \ge \limsup(x_n + y_n)$ implying $\limsup(x_n) + \limsup(y_n) \le \limsup(x_n + y_n)$.

A counterexample to equality is the sequences $(-1)^n$ and $(-1)^{n+1}$.