MATH221 December 12, 2019 final exam total 200 Solutions

1. (20) Solve the system of linear equations

x	—	y			=	1
2x	+	y	—	3z	=	8
x	_	2y	+	3z	=	-5

Solution.

$$\begin{bmatrix} 1 & -1 & 0 & 1 \\ 2 & 1 & -3 & 8 \\ 1 & -2 & 3 & -5 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 3 & -3 & 6 \\ 0 & -1 & 3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & -1 & 3 & -6 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 2 & -4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & -1 & 2 \\ 0 & 0 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -2 \end{bmatrix}$$
$$x = 1, \ y = 0, \ z = -2.$$

2. (20) Consider the system of linear equations

If x = 1 find a.

Solution. The system becomes

$$a - y = -1$$

 $y - 3z = 6$ and $a = 1$.
 $- 2y + 3z = -6$

a =

3. (60) Let
$$A = \begin{bmatrix} 1 & -1 & 0 \\ 2 & 1 & -3 \\ 1 & -2 & 3 \end{bmatrix}$$
.
(a) (15) Find Nul A .
Nul $A = \{0\}$.

- (b) (15) Find the column space Col ACol $A = \mathbf{R}^3$
- (c) (15) True or False? A⁻¹ exists.
 Mark one and explain.
 True
 False
- (d) (15) Compute det A. det A = 6
- 4. (20) True or False? If the only solution for $A\mathbf{x} = 0$ is $\mathbf{x} = 0$, then for each **b** the system $A\mathbf{x} = \mathbf{b}$ has only one solution.

Solution. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \mathbf{b} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}.$$

While $A\mathbf{x} = 0$ has only one solution $A\mathbf{x} = \mathbf{b}$ has no solutions at all.

Mark one and explain.

□ True □ False

- 5. (20) The three elementary row operations are:
 - (a) Interchage two rows.
 - (b) Replace one row by the sum of itself and a multiple of another row.
 - (c) Multiply all entries in a row by a nonzero constant.

Let $A = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, and $B = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$. True or False? A can be transformed to B using only two last elementary row operations.

Solution.

$$A = \begin{bmatrix} R_1 \\ R_2 \end{bmatrix} \rightarrow \begin{bmatrix} R_1 + R_2 \\ R_2 \end{bmatrix} \rightarrow \begin{bmatrix} R_1 + R_2 \\ -R_1 \end{bmatrix} \rightarrow \begin{bmatrix} R_2 \\ -R_1 \end{bmatrix} \rightarrow \begin{bmatrix} R_2 \\ R_1 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Mark one and explain.

□ True □ False

6. (40) Let $A = \begin{bmatrix} 4 & 2 \\ 2 & 1 \end{bmatrix}$.

(a) (15) Find eigenvalues λ_1 and λ_2 .

Solution.
$$\lambda_1 = 0, \ \lambda_2 = 5$$

 $\lambda_1 = \lambda_2 =$

(b) (15) Find eigenvectors \mathbf{v}_1 and \mathbf{v}_2 .

Solution. A possible choice of eigenvectors is $\mathbf{v}_1 = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$, and $\mathbf{v}_2 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$. $\mathbf{v}_1 = \mathbf{v}_2 =$

(c) (10) Find a diagonal matrix D, and an invertible matrix V, and V^{-1} so that $A = VDV^{-1}$.

Solution.

$$D = \begin{bmatrix} 0 & 0 \\ 0 & 5 \end{bmatrix}, V = \begin{bmatrix} -\frac{1}{\sqrt{5}} & \frac{2}{\sqrt{5}} \\ \frac{2}{\sqrt{5}} & \frac{1}{\sqrt{5}} \end{bmatrix}, V^{-1} = V.$$
$$D = , V = , V^{-1} =$$

7. (20) Let $\mathbf{a} = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, and $\mathbf{v} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$. Find the orthogonal projection \mathbf{p} of the vector \mathbf{v} on the line $\{t\mathbf{a} + \mathbf{b}, -\infty < t < \infty\}$.

Solution. Let $\mathbf{p} = t\mathbf{a} + \mathbf{b}$, then $0 = \mathbf{a}^T(\mathbf{v} - \mathbf{p})$, and $t = -\frac{1}{2}$. Finally $\mathbf{p} = \begin{bmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{bmatrix}$. $\mathbf{p} =$