$\begin{array}{c} \textbf{MATH225} \\ \textbf{quiz } \#1, \ 02/26/19 \\ \textbf{Total } 100 \\ \textbf{Solutions} \end{array}$

Show all work legibly.

Name:_____

- 1. (20) Consider $y' = -y^2 \cos(2t)$.
 - (a) (5) Identify $y' = -y^2 \cos(2t)$ as:

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ with linear coefficients □ none of the above

(b) (15) Solve $y' = -y^2 \cos(2t)$.

The solution is: **Solution**.

$$-\frac{y'}{y^2} = \cos(2t)$$

$$\int -\frac{y'}{y^2} dy = \int \cos(2t) dt$$

$$\frac{1}{y} = \frac{1}{2}\sin(2t) + c$$

$$y(t) = \frac{2}{\sin(2t) + 2c}$$

- 2. (20) Consider $2tyy' + 2t + y^2 = 0$.
 - (a) (5) Identify $2tyy' + 2t + y^2 = 0$ as:

separable - linear - exact - homogeneous - Bernoulli - with linear coefficients
none of the above

(b) (15) Solve $2tyy' + 2t + y^2 = 0$.

The solution is: $t^2 + ty^2 = c$. Solution. Note that $\frac{\partial(2t+y^2)}{\partial y} = 2y = \frac{\partial(2ty)}{\partial t}$, hence the equation is an exact equation, and

$$F(t,y) = F(0,0) + \int_0^t F_t(x,0) \, dx + \int_0^y F_y(t,s) \, ds$$

= $F(0,0) + \int_0^t 2x \, dx + \int_0^y 2ts \, ds$
= $F(0,0) + t^2 + ty^2.$

- 3. (20) Consider $y' = y + 2y^5$.
 - (a) (5) Identify $y' = y + 2y^5$ as:

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ with linear coefficients □ none of the above

(b) (15) Solve $y' = y + 2y^5$. The solution is:

> **Solution**. If $u = y^{-4}$ then the equation reduces to the linear equation u' + 4u = -8. The general solution for u' + 4u = 0 is $u(x) = ce^{-4x}$. A particular solution u_p for the equation u' + 4u = -8 is $u_p(x) = -2$. The general solution for u' + 4u = -8 is $-2 + ce^{-4x}$. Hence $y(x) = \pm \frac{1}{(ce^{-4x} - 2)^{1/4}}$.

- 4. (20) Consider y' = 2y + 3.
 - (a) (5) Identify y' = 2y + 3 as:

□ separable □ linear □ exact □ homogeneous □ Bernoulli □ with linear coefficients □ none of the above

(b) (15) Solve y' = 2y + 3, y(0) = 1. The solution is:

Solution. First solve y' = 2y with the general solution $y(x) = ce^{2x}$. Next find a particular solution $y_p(x)$ for y' = 2y + 3. This might be $y_p(x) = -\frac{3}{2}$. Hence the general solution for y' = 2y + 3 is $ce^{2x} - \frac{3}{2}$. We need to select c so that $ce^0 - \frac{3}{2} = 1$, i.e. $c - \frac{3}{2} = 1$, and $c = \frac{5}{2}$. The solution to the initial value problem is $\frac{5}{2}e^{2x} - \frac{3}{2}$.

- 5. (20) Consider $(x^2 y^2) dx + xy dy = 0$
 - (a) (5) Identify $(x^2 y^2) dx + xy dy = 0$ as:

separable - linear - exact - homogeneous - Bernoulli - with linear coefficients
none of the above

(b) (15) Solve $(x^2 - y^2) dx + xy dy = 0$. The solution is:

Solution. The substitution y = xu leads to the separable equation xuu' = 0 with the general solution $u^2(x) = 2\ln \left|\frac{c}{x}\right|$. Finally $y^2(x) = 2x^2 \ln \left|\frac{c}{x}\right|$.

6. (20) Consider (3x + 2y + 1)dx + (3x + 2y + 1)dy = 0.

(a) (5) Identify (3x + 2y + 1)dx + (3x + 2y + 1)dy = 0 as:

separable - linear - exact - homogeneous - Bernoulli - with linear coefficients
none of the above

(b) (15) Solve (3x + 2y + 1)dx + (3x + 2y - 1)dy = 0. The solution is: **Solution**. If u = 3x + 2y + 1, then udu + (5u + 6)dy = 0, and $dx = \frac{2 - u}{6 - u}du$. This leads to $c + x = u + 4 \ln |6 - u|$, and finally

$$c = 2x + 3y + 4\ln|5 - 3x - 2y|.$$

or else

(c) (15) Solve (3x + 2y + 1)dx + (3x + 2y + 1)dy = 0. The solution is: $\frac{dy}{dx} = -1$, and y(x) = -x + c. Solution.