February 14, 2019 Homework 2 due February 21, 2019

- 1. Show that for each $n \in \mathbf{N}$ which is different from 0 there is $m \in \mathbf{N}$ such that S(m) = n.
- 2. Let a, b, c, and $d \in \mathbf{N}$. Show that if $a \ge b$ and $c \ge d$, then $a + c \ge b + d$.
- 3. Let $\mathbf{N} = \{0, 1\}$ and define S(0) = 1, and S(1) = 1. Show that \mathbf{N} satisfies Peano's axioms 1 and 3, but not 2. Let ψ : $\mathbf{N} \to \mathbf{N}$ such that $\psi(0) = 1$, and $\psi(1) = 0$. Show that the recursion theorem breaks down for this ψ . That is there exists no map f : $\mathbf{N} \to \mathbf{N}$ such that f(0) = 0, and $f(S(n)) = \psi(f(n))$.
- 4. If x, y, and $z \in \mathbf{Z}$ show that
 - a) (x+y)z = xz + yz,
 - b) if $z \neq 0$, then xz = yz implies x = y.
 - c) if $x \ge y$ and $z \ge 0$, then $xz \ge yz$.
 - d) if $x \ge y$, then $x + z \ge y + z$.
 - e) If $x \neq y$, then x > y or y > x.