February 14, 2019 Homework 2 due February 21, 2019 Solutions

1. Show that for each $n \in \mathbf{N}$ which is different from 0 there is $m \in \mathbf{N}$ such that S(m) = n.

Solution. Let \mathbf{N}' be a subset of \mathbf{N} defined as follows:

 $\mathbf{N}' = \{0, \text{ and } n \in \mathbf{N} \text{ so that there is } m \in \mathbf{N} \text{ with } S(m) = n\}.$

We note that $0 \in \mathbf{N}'$, and if $n \in \mathbf{N}'$, then $S(n) \in \mathbf{N}'$. Hence $\mathbf{N}' = \mathbf{N}$. This completes the proof.

2. Let a, b, c, and $d \in \mathbf{N}$. Show that if $a \ge b$ and $c \ge d$, then $a + c \ge b + d$.

Solution. Since $a \ge b$ one has $a + c \ge b + c = c + b$. Since $c \ge d$ one has $c + b \ge d + b$.

3. Let $\mathbf{N} = \{0, 1\}$ and define S(0) = 1, and S(1) = 1. Show that \mathbf{N} satisfies Peano's axioms 1 and 3, but not 2. Let ψ : $\mathbf{N} \to \mathbf{N}$ such that $\psi(0) = 1$, and $\psi(1) = 0$. Show that the recursion theorem breaks down for this ψ . That is there exists no map f : $\mathbf{N} \to \mathbf{N}$ such that f(0) = 0, and $f(S(n)) = \psi(f(n))$.

Solution. If f exists, then

$$f(1) = f(S(0)) = \psi(f(0)) = \psi(0) = 1,$$

and
$$f(1) = f(S(1)) = \psi(f(1)) = \psi(1) = 0.$$

This contradiction completes the proof.

- 4. If x, y, and $z \in \mathbf{Z}$ show that
 - a) (x+y)z = xz + yz,

Solution. Straightforward computation.

b) if $z \neq 0$, then xz = yz implies x = y.

Solution. Select (n, 0), $n \in \mathbb{N}$ as a representative of the integer $z \ge 0$. If (a_x, b_x) is a representative for x, and (a_y, b_y) is a representative for y, then xz = yz yields $na_x + nb_y \ge nb_x + na_y$ and $a_x + b_y \ge b_x + a_y$. This shows $x \ge y$, and completes the proof.

c) if $x \ge y$ and $z \ge 0$, then $xz \ge yz$.

Solution. Select (n, 0), $n \in \mathbf{N}$ as a representative of the integer $z \ge 0$. If (a_x, b_x) is a representative for x, and (a_y, b_y) is a representative for y, then $x \ge y$ yields $a_x + b_y \ge b_x + a_y$. Note that $zx = (na_x, nb_x)$ and $zy = (na_y, nb_y)$. Since $n(a_x + b_y) \ge n(b_x + a_y)$ one has $zx \ge zy$.

d) if $x \ge y$, then $x + z \ge y + z$.

Solution. Straightforward computation.

e) If $x \neq y$, then x > y or y > x.

Solution. Follows straightforward from definition.