February 28, 2019 Homework 3 due March 7, 2019

- 1. Let $a > b \ge 0$ be integers, and a = bq + r, $0 \le r < b$. Show that gcd(a, b) = gcd(b, r).
- 2. Desscribe all positive integers n so that gcd(n, n+2) = 2.
- 3. Let $a, b, c \in \mathbf{N}$, and $d' = \min\{ax + by + cz > 0 : x, y, z \in \mathbf{Z}\}$. Show that d|a, d|b, and d|c, and for each divisor D of a, b and c one has D|d.
- 4. Let p be a prime number. If gcd(a, p) = 1, then $gcd(a^2, p) = 1$.
- 5. True or False? $a^m 1$ is a composite when a > 2.
- 6. Let p be a prime. True or False? $p^m + 1$ is a composite.
- 7. Let $F_n = 2^{2^n} + 1$. That is $F_0 = 3$, $F_1 = 5$, $F_2 = 17$.
 - a) Show that $\prod_{k=0}^{n-1} F_k = F_n 2.$
 - b) Based on the result above can you conclude that F_k and F_n are relatively prime when $k \neq n$?