February 28, 2019 Homework 3 due March 7, 2019 Solutions

- 1. Let $a > b \ge 0$ be integers, and a = bq + r, $0 \le r < b$. Show that gcd(a, b) = gcd(b, r). Solution. Note that
 - a) every divisor d of b and r is also a divisor of a,
 - b) every divisor d of a and b is also a divisor of r.
- 2. Desscribe all positive integers n so that gcd(n, n+2) = 2.

Solution. Since 2|n the number n = 2m, and n + 2 = 2(m + 1). If d|m and d|(m + 1), then d = 1. Hence for each pair n, n + 2 with n = 2m one has gcd(n, n + 2) = 2.

3. Let $a, b, c \in \mathbf{N}$, and $d' = \min\{ax + by + cz > 0 : x, y, z \in \mathbf{Z}\}$. Show that d|a, d|b, and d|c, and for each divisor D of a, b and c one has D|d.

Solution. Let d' = ax' + by' + cz', and d = ax + by + cz > 0. Note that d = d'q + r where $0 \le r < d'$, and $0 \le r = d - d'q = a(x - qx') + b(y - qy') + c(z - qz') < d'$. Due to minimality of d' one has d - d'q = 0, and d'|d for each D = ax + by + cz > 0. In particular d' is a divisor of

 $a = a \cdot 1 + b \cdot 0 + c \cdot 0, \ b = a \cdot 0 + b \cdot 1 + c \cdot 0, \ a = a \cdot 0 + b \cdot 0 + c \cdot 1.$

To complete the proof we note that if D is a divisor of a, b and c, then D also is a divisor of d' = ax' + by' + cz'.

- 4. Let p be a prime number. If gcd(a, p) = 1, then $gcd(a^2, p) = 1$. Solution. Assume $gcd(a^2, p) > 1$. Since p is prime $p = gcd(a^2, p)$, hence $p|a^2$, and p|a.
- 5. Show that $a^m 1$ is a composite. Solution. $a^m - 1 = (a - 1)(a^{m-1} + a^{m-2} + \dots + 1).$
- 6. Let p be a prime. True or False? $p^m + 1$ is a composite.

Solution. If p > 2, then p is odd, p^m is odd, and $p^m + 1$ is even. If p = 2, then $2^1 + 1 = 3$, but $2^3 + 1 = 9$. Let $F_n = 2^{2^n} + 1$. That is $F_0 = 3$, $F_1 = 5$, $F_2 = 17$.

7. Let $F_n = 2^{2^n} + 1$. That is $F_0 = 3$, $F_1 = 5$, $F_2 = 17$.

a) Show that
$$\prod_{k=0}^{n-1} F_k = F_n - 2.$$

Solution. Use Induction. Note that $F_0F_1 = 15 = 17 - 2 = F_3 - 2$. Assume the statement holds true for n = k.

$$F_0 F_1 \dots F_{k-1} F_k = (F_k - 2) F_k$$

= $(2^{2^k} - 1) (2^{2^k} + 1)$
= $2^{2^{k+1}} - 1 = F_{k+1} - 2.$

b) Based on the result above can you conclude that F_k and F_n are relatively prime when $k \neq n$?

Solution. If $k \neq n$, and $d = gcd(F_k, F_n)$, then $d|_2$, and, since F_k and F_n are odd, d must be 1.