1. Let a, b, c, and n be positive integers such that

$$gcd(a, n) = gcd(b, n) = gcd(c, n) = 1.$$

If a = qn + r with $0 \le r < n$ then we shall denote r by $(a)_n$, or just by (a) if there is no ambiguity concerning n. Let $A = \{(a), (ca), (c^2a), \dots\}$ and $B = \{(b), (cb), (c^2b), \dots\}$. Show that A and B are finite sets, |A| = |B|, and either A = B, or $A \bigcap B = \emptyset$.

- 2. Let *n* be a positive integer. Denote the number of positive integers less than *n* and relatively prime to *n* by $\varphi(n)$. Let *a*, *b* be positive integers such that gcd(a, n) = gcd(b, n) = 1. Consider the set $S_a = \{(a), (ba), (b^2a), \dots\}$ (see Problem 1). Let s = |A|. Show that $s|\varphi(n)$.
- 3. Let p > 2 be a prime number.
 - a) Find all solutions for $x^2 \equiv 1 \pmod{p}$.
 - b) If $a \not\equiv 0, 1 \pmod{p}$, and $ab \equiv 1 \pmod{p}$, then $p \not\mid (a b)$.
 - c) $(p-1)! \equiv -1 \pmod{p}$.
- 4. Let *p* be a prime number. If $[a]_p^2 = [a]_p$, then $[a]_p = [0]_p$, or $[a]_p = [1]_p$.
- 5. If b is not a prime number find $x \neq 0, 1$ that solves $[x]_b^2 = [x]_b$.
- 6. Let n be a positive integer with no non zero square factors. Show that for each 0 < a < nand $1 \le k$ one has $[a]_n^k \ne [0]_n$.