March 14, 2019 Homework 5 due March 28, 2019 Solutions

1. Let a, b, c, and n be positive integers such that

$$gcd(a, n) = gcd(b, n) = gcd(c, n) = 1.$$

If a = qn + r with $0 \le r < n$ then we shall denote r by $(a)_n$, or just by (a) if there is no ambiguity concerning n. Let $A = \{(a), (ca), (c^2a), \dots\}$ and $B = \{(b), (cb), (c^2b), \dots\}$. Show that A and B are finite sets, |A| = |B|, and either A = B, or $A \bigcap B = \emptyset$.

Solution. Since for i = 1, 2, ... one has $0 \le (c^i a) < n$ the set A contains at most n elements. There are indeces i and i + j, $j \ge 1$, so that $(c^i a) = (c^{i+j}a)$, and $c^i a(c^j - 1)$ is divisible by n. Since $gcd(c^i a, n) = 1$ this means that $n|(c^j - 1)$ for a positive j. We denote such smallest positive integer j by s (this s is called the **multiplicative order** of a). That is $n|(c^s - 1)$, and for $1 \le j < s$ one has $n \not|(c^j - 1)$.

This yields |A| = s, and, since s does not depend on a, also |B| = s. Finally if $(c^i a) = (c^j b)$, then

$$A = \left\{ (c^{i}a), (c^{i+1}a), \dots, (c^{i+s-1}a) \right\} = \left\{ (c^{j}b), (c^{j+1}b), \dots, (c^{j+s-1}b) \right\} = B$$

2. Let a, b, and n be positive integers such that gcd(a, n) = gcd(b, n) = 1. Consider the set $S_a = \{(a), (ba), (b^2a), \dots\}$ (see Problem 1). Let s = |A|. Show that $s|\varphi(n)$.

Solution. For each c such that $0 \le c < n-1$ and gcd(c,n) = 1 the set S_c contains s elements. If the number of distinct sets S_c is k, then $\varphi(n) = ks$.

- 3. Let p > 2 be a prime number.
 - a) Find all solutions for $x^2 \equiv 1 \pmod{p}$. Solution.

$$x^2 \equiv 1 \pmod{p} \Rightarrow p|(x^2-1) \Rightarrow p|(x-1) \text{ or } p|(x+1) \Rightarrow x = np\pm 1, n = 0, \pm 1, \pm 2, \dots$$

- b) If $a \not\equiv 0, 1 \pmod{p}$, and $ab \equiv 1 \pmod{p}$, then $p \not\mid (a b)$. Solution. If $ab \equiv 1 \pmod{p}$, and $a \equiv b \pmod{p}$, then $a^2 \equiv 1 \pmod{p}$. Due to part a) above $a \equiv 1 \pmod{p}$, or $a \equiv 0 \pmod{p}$.
- c) $(p-1)! \equiv -1 \pmod{p}$. Solution. Pair each $1 \leq a < p$ with its inverse.
- 4. Let p be a prime number. If $[a]_p^2 = [a]_p$, then $[a]_p = [0]_p$, or $[a]_p = [1]_p$. Solution. If $0 \le a < p$, and $a^2 - a = pq$, then p|a(a-1), and p|gcd(p,a)gcd(p,a-1). This yields a = 0, or a = 1.

5. If b is not a prime number find $x \neq 0, 1$ that solves $[x]_b^2 = [x]_b$.

Solution. Let $b = b_1b_2$ with $gcd(b_1, b_2) = 1$, and $sb_1 + tb_2 = 1$. If $x = tb_2$, then $x^2 - x = tb_2(tb_2 - 1) = -tb_2tb_1 = -t^2b$.

6. Let n be a positive integer with no non zero square factors. Show that for each 0 < a < nand $1 \le k$ one has $[a]_n^k \ne [0]_n$.

Solution. Note that $n = p_1^{\alpha_1} \cdots p_m^{\alpha_m}$, with prime p_i and $\alpha_i \ge 1$. Lack of square factors yields $\alpha_1 = \cdots = \alpha_m = 1$, and $n = p_1 \cdots p_m$. If $[a]_n^k = [0]_n$, then $n|a^k$ and $p_i|a^k$, $i = 1, \ldots, m$. This yields $p_i|a, i = 1, \ldots, m$, and $a = q \cdot p_1 \cdots p_m = qn$. This contradiction completes the proof.