April 11, 2019 Homework 7 due April 25, 2019

- 1. True or False? If $\sigma, \tau \in S_n$, then $\sigma \tau = \tau \sigma$.
- 2. If s_1 , s_2 , s_3 , and s_4 are distinct, then

$$(s_2, s_3)(s_1, s_4) = (s_1, s_4)(s_2, s_3)$$
, and $(s_2, s_3)(s_1, s_3) = (s_1, s_2)(s_2, s_3)$.

- 3. Let $\sigma = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 1 \end{pmatrix}$. Represent σ as a product of transpositions.
- 4. Note that (1, 2) is an odd permutation. Indeed (1, 2)(1, 2) = (1). If σ is a cycle of length 3, and $\sigma \in S_3$, then $\tau = (3, \sigma(3))\sigma$ is a cycle of length 2, hence τ is an even permutation. This shows that σ is an odd permutation. Show that
 - a) if $\sigma \in S_{2n}$ is a cycle of length 2n, then σ is an even permutation.
 - b) if $\sigma \in S_{2n+1}$ is a cycle of length 2n + 1, then σ is an odd permutation.
- 5. Let $k \leq n$. If $(1, \ldots, k)$ is a cycle of length k in S_n , and σ is a cycle of length k in S_n , then there is a transposition τ so that $\tau \sigma \tau^{-1} = (1, \ldots, k)$.
- 6. Let $k \leq n$, and $\sigma_n \in S_n$ such that $\sigma_n(i) = i$ when i > k. We shall say that σ_n is associated with $\sigma_k \in S_k$ in the obvious way if $\sigma_k(i) = \sigma_n(i)$, $i = 1, \ldots, k$. For σ_n , $\tau_n \in S_n$ define $\sigma_n \sim \tau_n$ if $\sigma_n \tau_n^{-1} \in S_k$. For a given $\sigma_n \in S_n$ describe all $\tau_n \in S_n$ so that $\sigma_n \tau_n^{-1} \in S_k$.