April 26, 2019 Homework 8 due May 9, 2019 Solutions

1. Let let G be a group. If for each $a \in G$ one has $a^2 = 1$, then for all $a, b \in G$ one has ab = ba.

Solution. Note that ab(ab) = 1 = ab(ba). This shows that $(ab)^{-1} = ab$, and also $(ab)^{-1} = ba$. Since the inverse unique, the result follows.

2. Let $G = \mathbf{R} \setminus \{-1\}$. Define a * b = a + b + ab. Show that (G, *) is a group.

Solution. Note that a * 0 = a, and $a * \left(\frac{-a}{1+a}\right) = 0$.

- 3. Let $y_a a = a$ and $y_b b = b$. Show that $y_a = y_b$. Solution. Let b = ay, then $y_a b = y_a(ay) = (y_a a)y = ay = b$.
- 4. Show that the set $\{f_{m,b} : \mathbf{R} \to \mathbf{R} : m \neq 0$, and $f_{m,b}(x) = mx + b\}$ forms a group under composition of functions.

Solution. Note that $f_{n,a}(f_{m,b}(x)) = f_{nm,nb+a}(x)$. Hence $f_{1,0}(f_{m,b}) = f_{m,b} = f_{m,b}(f_{1,0})$. Also when $n = \frac{1}{m}$, and $a = -\frac{b}{m}$ one has $f_{n,a}(f_{m,b}(x)) = f_{m,b}(x) = f_{m,b}(f_{n,a}(x))$.

5. Show that the set of matrices $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}$ with $m \neq 0$ is a group under matrix multiplication. Solution. Note that

$$\left[\begin{array}{cc}m&b\\0&1\end{array}\right]\left[\begin{array}{cc}n&a\\0&1\end{array}\right]=\left[\begin{array}{cc}mn&ma+b\\0&1\end{array}\right]$$

When $n = \frac{1}{m}$, and $a = -\frac{b}{m}$ one has $\begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix} \begin{bmatrix} n & a \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} n & a \\ 0 & 1 \end{bmatrix} \begin{bmatrix} m & b \\ 0 & 1 \end{bmatrix}.$

- 6. Let G be a group, and |G| = 2n. True or False? There is $a \in G$ so that $a \neq 1$, and $a^2 = 1$. Solution. Suppose the opposite, that is for each $a \neq 1$ the equation ab = 1 implies $a \neq b$. The sets $\{a, b\}$, $\{c, d\}$ if not identical, then disjpoint. This shows that |G| is odd. This contradiction completes the proof.
- 7. Let S be a subset of $GL_2(\mathbf{R})$ that consists of symmetric matrices. True or False? S is a subgroup of $GL_2(\mathbf{R})$.

Solution. Consider $a, b \in S$

$$a = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$$
, and $b = \begin{bmatrix} 1 & 1 \\ 1 & 3 \end{bmatrix}$. Note that $ab = \begin{bmatrix} 2 & 4 \\ 3 & 7 \end{bmatrix} \notin S$.

8. Let $a = \begin{bmatrix} 1 & -1 \\ -1 & 0 \end{bmatrix}$. Show that $a^n = \begin{bmatrix} f_{n+1} & -f_n \\ -f_n & f_{n-1} \end{bmatrix}$, where $f_0 = 0$, $f_1 = 1$, and $f_{n+1} = f_n + f_{n-1}$ is the Fibonacci sequence. Solution. Use induction.