Name:

MATH225 Final Examination, 05/14/15 Total 100 Solutions

Show all work legibly.

- 1. (20) Consider the differential equation $y' + 4y e^{-x} = 0$.
 - (a) (5) Find a general solution $y_g(x)$ to the differential equation y' + 4y = 0.

 $y_g(x) = ce^{-4x}$

(b) (10) Find a general solution $y_g(x)$ to the differential equation $y' + 4y = e^{-x}$.

$$y_g(x) = ce^{-4x} + \frac{1}{3}e^{3x}$$

(c) (5) Solve the inial value problem $y' + 4y - e^{-x} = 0, \ y(0) = \frac{4}{3}.$

The solution is $y(x) = e^{-4x} + \frac{1}{3}e^{3x}$

- 2. (60) Consider the differential equation $y'' + 4y' + 4y = \frac{e^{-2x}}{x^2}, x > 0.$
 - (a) (20) Find the general solution of y" + 4y' + 4y = 0. The solution is:
 Solution. λ²+4λ+4 = 0, hence λ = -2, and the general solution is c₁e^{-2x}+c₂xe^{-2x}.

(b) (20) Find a particular solution $y_p(x)$ of $y'' + 4y' + 4y = \frac{e^{-2x}}{x^2}$. The solution is: Solution. $y_p(x) = u_1(x)e^{-2x} + u_2(x)xe^{-2x}$, where

$$u_1(x) = -\int x e^{-2x} \frac{e^{-2x}}{x^2} \frac{1}{W(x)} dx, \ u_2(x) = \int e^{-2x} \frac{e^{-2x}}{x^2} \frac{1}{W(x)} dx, \ \text{where } W(x) = e^{-4x}.$$

Hence

$$u_1(x) = -\int \frac{1}{x} \, dx = -\ln x, \text{ and } u_2(x) = \int \frac{1}{x^2} \, dx = -\frac{1}{x}.$$
$$y_p(x) = -e^{-2x} \ln x - e^{-2x}.$$

(c) (10) Find the general solution of $y'' + 4y' + 4y = \frac{e^{-2x}}{x^2}, x > 0.$ The solution is: $c_1 e^{-2x} + c_2 x e^{-2x} - e^{-2x} \ln x.$ (d) (10) Solve the initial value problem $y'' + 4y' + y = \frac{e^{-2x}}{x^2}$, y(1) = 1, y'(1) = 0. The solution is: Solution. The initial conditions yield:

$$1 = -c_1 - 2c_2$$
, and $e^2 = c_1 + c_2$.

Finally $c_1 = e^2$, $c_2 = -1 - e^2$, and $y(x) = e^2 e^{-2x} + [-1 - e^2] x e^{-2x} - e^{-2x} \ln x$.

- 3. (20) Consider the differential equation $y'' + y = 2^x$.
 - (a) (5) Find a general solution $y_g(x)$ to the differential equation y'' + y = 0.

 $y_g(x) = c_1 \sin x + c_2 \cos x.$

(b) (15) Find a particular solution y_p to the differential equation $y'' + y = 2^x$.

$$y_p(x) = \frac{1}{1 + (\ln 2)^2} 2^x$$

(Hint: $2^x = e^{x \ln 2}$)

4. (10) Find the solution y(t) for $y'' - y = 4\delta(t-2) + t^2$, y(0) = 0, y'(0) = 2.

$$Y = 4e^{-2s}\frac{1}{s^2 - 1} + 2\frac{s^2 - s + 1}{s^3(s - 1)}$$

$$y(t) = 2\left(e^{t-2} + e^{-(t-2)}\right)u(t-2) - 2 - t^2 + 2e^t$$

5. (20) Compute $\int_{-\infty}^{\infty} \delta(x) \tan x^2 dx$.

$$\int_{-\infty}^{\infty} \delta(x) \tan x^2 \, dx = \tan 0 = 0.$$