MATH430/603 Final, 05/14/15 Total 100 Solutions

Show all work legibly.

- 1. (40) Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_n\}$ and $\{\mathbf{v}_1, \ldots, \mathbf{v}_n\}$ be two sets of linearly independent vectors in \mathbf{R}^n .
 - (a) (20) True of False? For each *i* there is a vector w_i so that v_j^Tw_i = δ_{ij}.
 Solution. Let w_i ∈ span{v₁,..., v_{i-1}, v_{i+1},..., v_n}. Since v_i ∉ span{v₁,..., v_{i-1}, v_{i+1},..., v_n} one has v_i^Tw_i ≠ 0. Appropriate normalization of w_i completes the proof.
 Mark one and explain.
 True □ False
 - (b) (20) True of False? The matrix A = ∑_{i=1} u_iv_i^T is invertible.
 Solution. Let w_i ∈ Rⁿ such that v_j^Tw_i = δ_{ij}. Note that the vector set {w₁,...,w_n} is linearly independent, and Aw_i = u_i.
 Mark one and explain.
 □ True □ False
- 2. (20) Let A be an $n \times n$ matrix such that dim N(A) = n 2. True of False? There are vectors \mathbf{u}_1 , \mathbf{u}_2 and \mathbf{v}_1 , \mathbf{v}_2 such that $A = \mathbf{u}_1 \mathbf{v}_1^T + \mathbf{u}_2 \mathbf{v}_2^T$.

Solution. dim N(A) = n - 2 implies dim R(A) = 2. Suppose $A = [\mathbf{a}_1, \dots, \mathbf{a}_n]$, and R(A) =span $\{\mathbf{a}_1, \mathbf{a}_2\}$. Note that $\mathbf{a}_i = c_{1i}\mathbf{a}_1 + c_{2i}\mathbf{a}_2$, $i = 3, \dots, n$. We set $\mathbf{u}_1 = \mathbf{a}_1$, $\mathbf{u}_2 = \mathbf{a}_2$, $v_1 = \begin{bmatrix} 1 \\ 0 \\ c_{13} \\ \cdots \\ c_{1n} \end{bmatrix}$,

and
$$v_2 = \begin{bmatrix} 0 \\ 1 \\ c_{23} \\ \cdots \\ c_{2n} \end{bmatrix}$$
, and the result follows.

Mark one and explain.

 \square True \square False

- 3. (20) Let A and B be two $n \times n$ matrices such that $A = A^2$, $B = B^2$, and AB = BA = 0.
 - (a) Compute $C = \begin{bmatrix} A \\ B \end{bmatrix} [A+B][AB]$ (here [AB] is an $n \times (2n)$ matrix with the first $n \times n$ block being A, and the second one B).

Solution.

$$\left[\begin{array}{c}A\\B\end{array}\right][A+B][AB] = \left[\begin{array}{c}A\\B\end{array}\right][AB] = \left[\begin{array}{c}A&0\\0&B\end{array}\right].$$

(b) (20) True or False? rank $C = \operatorname{rank} A + \operatorname{rank} B$?

Solution. See (a) above.

Mark one and explain.

 \square True \square False

(c) (20) True or False? rank
$$\begin{bmatrix} A \\ B \end{bmatrix} [A B] = \operatorname{rank}[A B]^{\frac{1}{2}}$$

Solution. Note that

rank
$$\begin{bmatrix} A \\ B \end{bmatrix} [A B] = \operatorname{rank} [A B] - \dim \left(N \begin{bmatrix} A \\ B \end{bmatrix} \bigcap R[A B] \right).$$

If $\mathbf{x} \in N \begin{bmatrix} A \\ B \end{bmatrix} \cap R[A B]$, then $0 = A\mathbf{x} = B\mathbf{x}$, and there are $\mathbf{y}_1, \mathbf{y}_2$ so that $\mathbf{x} = A\mathbf{y}_1 + B\mathbf{y}_2$. This yields

$$0 = A\mathbf{x} = A(A\mathbf{y}_1 + B\mathbf{y}_2) = A\mathbf{y}_1$$
, and $0 = B\mathbf{x} = B(A\mathbf{y}_1 + B\mathbf{y}_2) = B\mathbf{y}_2$; i.e. $\mathbf{x} = 0$.

Mark one and explain.

 \square True \square False

(d) (20) True or False? rank[A B] = rankA + rankB.

Solution. Let $A = [\mathbf{a}_1, \dots, \mathbf{a}_k, \mathbf{a}_{k+1}, \dots, \mathbf{a}_n]$, and $B[\mathbf{b}_1, \dots, \mathbf{b}_l, \mathbf{b}_{l+1}, \dots, \mathbf{b}_n]$ with first k and l columns of A and B respectively being linearly independent. Note that

$$c_1\mathbf{a}_1 + \ldots + c_k\mathbf{a}_k + d_1\mathbf{b}_1 + \ldots + d_l\mathbf{b}_l = 0$$

yields

$$0 = A(c_1\mathbf{a}_1 + \ldots + c_k\mathbf{a}_k + d_1\mathbf{b}_1 + \ldots + d_l\mathbf{b}_l) = c_1\mathbf{a}_1 + \ldots + c_k\mathbf{a}_k,$$

and

$$0 = B(c_1\mathbf{a}_1 + \ldots + c_k\mathbf{a}_k + d_1\mathbf{b}_1 + \ldots + d_l\mathbf{b}_l) = d_1\mathbf{b}_1 + \ldots + d_l\mathbf{b}_l$$

Mark one and explain.

 \square True \square False

(e) (20) True or False?
$$\begin{bmatrix} A \\ B \end{bmatrix} [A+B] = \begin{bmatrix} A \\ B \end{bmatrix}$$
.
Solution. Straightforward computation.

Mark one and explain.

 \square True \square False

(f) (20) True or False? rank
$$\begin{bmatrix} A \\ B \end{bmatrix} [A+B][AB] = \operatorname{rank}A + \operatorname{rank}B$$
.
Solution.

Mark one and explain.

 \square True \square False

4. (20) Let
$$\mathbf{x} = \begin{bmatrix} x_1 \\ \dots \\ x_n \end{bmatrix}$$
, $\mathbf{y} = \begin{bmatrix} y_1 \\ \dots \\ y_n \end{bmatrix}$. Denote $\max_i y_i$ by \overline{y} , and $\min_i y_i$ by \underline{y} . True or False? If $\sum_{i=1}^n x_i = 0$, then $\left| \mathbf{x}^T \mathbf{y} \right| \le |\mathbf{x}|_1 (\overline{y} - \underline{y}).$

Solution. Note that

 $x_1y_1 + x_2y_2 + \ldots + x_ny_n = -(x_2 + \ldots + x_n)y_1 + x_2y_2 + \ldots + x_ny_n = x_2(y_2 - y_1) + x_3(y_3 - y_1) + \ldots + x_n(y_n - y_1)$

Hence

$$\left|\mathbf{x}^{T}\mathbf{y}\right| \leq |x_{2}||y_{2}-y_{1}|+\ldots+|x_{n}||y_{n}-y_{1}| \leq |x_{2}|(\overline{y}-\underline{y})+\ldots+|x_{n}|(\overline{y}-\underline{y}) \leq |\mathbf{x}|_{1}(\overline{y}-\underline{y}).$$

Mark one and explain.

 \square True \square False