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Abstract. We introduce a new analytical model of user-based dynamic
pricing in which decisions occur in real time and are strongly influenced
by the budget constraints of users. This model captures the fundamental
operation of many electronic markets that are used for allocating re-
sources. In particular, we focus on those used in data centers and cloud
computing where pricing is often an internal mechanism used to effi-
ciently allocate virtual machines. We study the allocative properties and
dynamic stability of this pricing model under a standard framework of
cloud computing systems which leads to highly degenerate systems of
prices. We show that as the size of the system grows the user-based
budget-constrained dynamic pricing mechanism converges to the stan-
dard Walrasian prices. To show this, we consider the “quasi-static” ap-
proximation for the model that provides tractability for theoretical anal-
ysis. However, for finite systems, the prices can be non-degenerate and
the allocations unfair, with large groups of users receiving allocations
significantly below their fair share. In addition, we show that improper
choice of price update parameters can lead to significant instabilities in
prices, which could be problematic in real cloud computing systems, by
inducing system instabilities and allowing manipulations by users. We
construct scaling rules for parameters that reduce these instabilities.

1 Introduction

Price-based mechanisms provide simple, powerful, and robust tools to allocate
resources in complex systems. They are easy to design, as they adaptively set
prices for each resource and then allow users to purchase their optimal bundle of
resources at those prices. Furthermore, unlike traditional algorithmic methods,
they adapt easily to changes or additions in the architecture of the underlying
system. For these reasons they are widely used for internal pricing to optimize
resource allocation in cloud computing and data centers.

While the static/equilibrium theory of price mechanisms is well established,
their dynamics are not as well understood. However, in modern electronic mar-
kets and computer systems the real-time behavior is crucial. The most well
understood dynamics of price mechanisms are studies of the Tatonnement [17],
a fictitious price adjustment mechanism where users reveal their true preferences
to a sequence of hypothetical prices. While this and other previously studied dy-
namic models of pricing (e.g., [7, 4]) can be informative, they do not capture the
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key issues that arise in many computational settings. They both overlook im-
portant dynamical details as well as ignoring budget constraints—an important
aspect of real systems using user-based markets.1

In this paper we construct a dynamic model of real time pricing that is driven
by users’ budget constraints. We show that in the limit of a large number of
users (relative to the number of different types of resources) budget-constrained
pricing (BCP) leads to the standard (static) price equilibrium. However, with a
finite number of users there are discrepancies and instabilities which we study
both analytically and via simulations.

For concreteness, we focus on a specific resource allocation problem aris-
ing in data centers and cloud computing: allocating virtual machines (VMs) to
users, where the goal is to simultaneously maintain high efficiency and max-
min fairness [9]. Unlike some well-known systems like Amazon’s Elastic Cloud
Compute Center (EC3) where VMs are rented out to maximize profit, and al-
locative fairness is secondary, these clouds are typically either used by a single
large organization, where max-min fairness is based on internal divisions in the
company [2], or shared by many organizations over the long term and max-min
fairness ensures that each receives its correct share of the resources [11, 9].

In such systems (e.g., [12]) there are typically tens to hundreds of users and
thousands to millions of VMs. The key constraint is that the VM be compati-
ble with the user’s request. For example, many users have tasks that can only
run under a specific operating system (Linux/Windows), a VM with specific
hardware, such as a GPU or other properties, such as a public IP address.

These user-based markets use scrip [14, 15, 3, 7] (money that has no value
outside the system) which is replenished at a regular rate. Given this dynamic
supply of scrip, budgeting is of primary importance and budget constraints can
dominate user behavior, i.e., if a user spends all its money it cannot run any
more jobs until a replenishment arrives.

We study the behavior of these user-based budget-constrained markets and
show that they are surprisingly effective—they can attain both high efficiency
and max-min fairness. This is true in the large market limit, but can also be
attained for finite markets subject to some key design principles that we uncover.

In particular, our analysis shows that these user-based budget-constrained
markets provide a solution to a problem that arises in the analysis of these
systems using a classical market. This problem arises because in equilibrium the
classical Walrasian prices are highly degenerate for this economy. In particular,
the equilibrium prices in such an economy are all the same which can lead to
problems in allocations, i.e., when prices of different VMs are the same but the
optimal allocation requires a specific allocation, it is unclear how users would
implement this allocation when they are unaware of its details.

We show that this problem is largely resolved by the budget-constrained be-
havior which leads to slight differences in prices providing the incentives to move

1 The importance of budgetary constraints in auction design is also an important topic
of current study [6, 10].
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away from over-demanded VMs. These price differences can be either transitory
in the case of tie breaking or permanent in the case of more popular machines.

Our model is also of interest to the study of pricing and markets in economic
theory as it provides a new alternative to the Tatonnement. In particular, our
“quasi-static” approximation provides a tractable model of price adjustments
that may be more widely applicable.

2 Model

Our model consists of two parts: (1) a standard model of internal cloud com-
puting centers (CCCs) where VMs are allocated to users, coupled with (2) a
user-based budget-constrained dynamic pricing mechanism, which governs the
prices of VMs, and consequently also affects the allocation of VMs to users.
The main contribution of our paper is studying the effects of this user-based
budget-constrained dynamic pricing mechanism.

Let us first introduce the standard model of CCCs that we consider. The
set of VMs, M , is divided into classes according to the partition C, and let
m = |M |. The set of users is denoted by N , with n = |N |. Each user i has a set
of allowable VM classes, Ci ⊆ C, on which she can run her tasks. In order to
avoid trivialities, assume that every class is demanded by at least one user.

As shown in Fig. 1, these restrictions create a bipartite graph between users
and VMs: circles represent groups of users with the same sets of allowable VM
classes, squares represent the classes of VMs, and edges connect the groups of
users to their allowable types. For example, Fig. 1a shows a system with k + 1
classes of VMs and k + 1 groups of users, where users of type 0 only like class
0 VMs, while for 1 ≤ j ≤ k users of type j like VMs from classes 0 and j.
We refer to this as the “finicky” example, as users in group 0 only want the
overdemanded VMs. Fig. 1b shows a model with more complex preferences which
we will consider later.

Fig. 1: Bipartite graph that illustrates preference structures and can be used
to compute feasibility of max-min allocations.

Let X represent an allocation of VMs where Xi(t) is the set of VMs allocated
to user i at time t, and let xi(t) = |Xi(t)|. For analytic tractability2, we assume

2 We admit that this assumption is at odds with standard run time distributions
of tasks in CCCs, which tend to be heavy tailed [1], but believe that by greatly
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that all tasks take the same amount of time on average and are distributed
i.i.d. according to an exponential distribution with rate α. We assume that users
receive equal utility for each completed job, and are indifferent between different
VMs within their allowable types. Consequently, xi(t) is the instantaneous utility
of user i at time t, since we assume that users are only allocated their allowable
classes and we are focusing on the average value over time of this. In particular,
we will be interested in the equal utility allocation, xi(t) = m/n, and more
generally the max-min fair allocations [11, 9]. Note that one can easily check the
feasibility of the max-min fair allocations (or any other specified allocation) by
solving a maximum flow on the augmented bipartite graph in Fig. 1.

In order to dynamically allocate the VMs we consider a simple dynamic
pricing mechanism that captures the essence of many pricing mechanisms used
in CCCs. Unlike traditional (non-price-based) allocation mechanisms for CCCs
(see [9] for an examplar and the references therein), user-based pricing mecha-
nisms are simple decentralized mechanisms that can easily adapt to changes in
the system, as the optimization is facilitated directly by the users. However, in
addition to the added responsibility this imposes on users, it may also lead to
instabilities, as we will see later.

In our model we assume that each VM class c has a current price pc(t) at
time t. Users receive allotments, s units, of scrip at small time intervals (the
lengths of which we assume for tractability are i.i.d. exponentially distributed
with rate γ), and their current budget at time t is given by bi(t).

When a VM completes a task it becomes available and users can request to
run their next task on that VM. In order to focus on budgetary issues rather
than strategic purchasing decisions, we make the simplifying assumption that a
user will always request a VM if the class c of this VM is allowable for them,
i.e., c ∈ Ci, and if they have sufficient budget, i.e., bi(t) ≥ pc(t). In particular,
this assumes that users are not constrained by capacities—they want as many
machines as possible; they are constrained only by their budgets. Let U(t) be the
set of users requesting a VM from class c that became available at time t, and let
u(t) = |U(t)|. If u(t) > 0 then the VM is allocated uniformly at random to one
of the users in U(t), and the chosen user’s budget is decreased by pc(t) (i.e., they
pay for the machine immediately); otherwise the VM becomes inactive for an
exponentially distributed time with rate β. In both cases the price is updated as
described below. When an inactive VM becomes available again it is readvertised
to the users, some of which may now have enough budget to purchase the VM.
Note that the use of a finite readvertising rate simplifies the pricing update rates
allowing one to update a finite number of times at specified (stochastic) intervals.
It also guarantees that at most one VM becomes available at a time.

The price is updated according to a simple multiplicative rule:

pc(t)→ exp(ε(u(t)− 1))pc(t), (1)

facilitating the analysis and providing insights into problems that would not be
tractable otherwise, it provides a useful approximation.
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where ε > 0. This specific rule is chosen for its tractability and its value in
constructing polynomial time algorithms [4], but does not affect our main results
as long as the price decreases for u(t) = 0 and increases for u(t) > 1. For example,
one could use an additive rule, as is common in the economics literature [16]:
pc(t) → pc(t) + ε(u(t) − 1). For such rules, if a class of VMs is consistently not
demanded then its price will fall, while if a class of VMs is overdemanded, then
its price will rise.

3 Theoretical Results

The full theoretical analysis of the system described in Section 2 appears quite
complex. Nonetheless, we are able to analyze various simplifications of the model,
which provide us with useful intuition on what behavior to expect of the system;
these intuitions are then confirmed via simulations in Section 4.

3.1 A single class

To understand the basic behavior of our model we first provide an analysis of a
CCC with a single class of VMs. In order to understand the equilibrium prices we
consider the limit of slow price adjustments (i.e., ε ≈ 0). To see these analytically,
we fix the price (set ε to 0) and find conditions under which the effect of price
adjustments, at that price, would average out, leading to no macroscopic drift.

Recall that there are n users, m VMs, with task completion rate α, idle
VM readvertising rate β, and scrip replenishment rate γ. In order to reduce the
size of the state space we assume that the prices are the same as the budget
replenishment sizes, p = s = 1, since then the vector of budgets b(t) is integral,
allowing us to relate the budget dynamics to a random walk on a lattice. Rather
than vary p directly, we note that the key ratio is pα/(γs) and thus, due to
rescaling, we only need to consider finding the value of γ for which the price is
in equilibrium.

Next we note that the number of nonzero entries of b(t) is exactly u(t) and
let R(t) be the number of idle VMs at time t (i.e., the size of the reserve). Then
(b(t), R(t)) follows a continuous-time random walk in Nn×{0, 1, . . . ,m} with the
following rates. For every i, at rate γ, (b(t), R(t))→ (b(t) + ei, R(t)), where ei is
the unit vector in direction i; if bi(t) > 0, then (b(t), R(t))→ (b(t)− ei, R(t)) at
rate α(m−R(t))/u(t) and (b(t), R(t))→ (b(t)− ei, R(t)− 1) at rate βR(t)/u(t);
and finally if b(t) = 0, then (0, R(t))→ (0, R(t) + 1) at rate α(m−R(t)).

In fact, denoting |b(t)| =
∑n
i=1 bi(t), it follows that the pair (|b(t)|, R(t)) is

also a Markov chain, with state space N×{0, 1, . . . ,m}. For m = 1, the stationary
distribution π of this chain (assuming γn < α, β, so that it is positive recurrent)
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can be computed explicitly. We have for i ≥ 1 (calculations omitted):

π(i, 0) = π(0, 0)
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From this it follows that the fraction of time the VM is unused,
∑∞
i=0 π(i, 1), is

equal to
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2
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2
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If β is large and γn/α = 1− δ, then this fraction is approximately δ/2, i.e., the
system can be made efficient with proper choice of the parameters.

The condition for an equilibrium price is that if we incorporate price updates
with small ε, the expected change in price is zero. By taking the logarithm in
the price update equation (1), this is equivalent to the condition that E(u(t)) =
1. Though (|b(t)|, R(t)) does not contain enough information to compute this
directly, in the large n limit each user is extremely unlikely to have a budget
larger than 1, so we can approximate u(t) by |b(t)| to approximately compute
the equilibrium price as a function of the parameters. After some algebra, the
approximate equilibrium condition reduces to

α2β3 (β + γn) + (β + γn)β (α− γn)
3

(−α+ β + γn)

− αβ2
(

(γn)
2

+ αβ
)
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− α (β + γn)
2

(α− γn)
3

=
β2 (α− γn)

3
(−α+ β + γn)

απ(0, 0)
.

For larger m this approach becomes unwieldy. However, when α = β, the
dynamics of b(t) becomes autonomous: it performs a continuous-time random
walk on N with jump rate γn upwards and αm downwards. Provided γn < αm,
this has a geometric stationary distribution with parameter (γn)/(αm).
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The intuition to take away from this section is that it is natural to have β
larger than α, in order to not have idle machines, i.e., to increase efficiency. The
dynamics of the reserve R(t) is not autonomous: in fact, R(t) can only increase
when b(t) = 0, and it can only decrease when b(t) 6= 0. We have R(t)→ R(t) + 1
at rate α(m − R(t)) when b(t) = 0, and R(t) → R(t) − 1 at rate βR(t) when
b(t) 6= 0. We can thus see that large β increases the drift towards zero for
R(t), and thus leads to greater efficiency. See also Section 4, which confirms this
property for general systems via simulations.

3.2 Quasi-Static Approximations, Asymptotic Fairness and
Walrasian Equilibrium

The first key property of price mechanisms is their efficiency; however in the gen-
eral setting of CCCs efficiency is easy to attain—just allocate any available VM
to any user who can use it. So the main reason CCCs use pricing mechanisms is
equity (fairness). In our setting the standard (static) Walrasian equilibrium [17]
attains the equal share solution if it is feasible, or more generally, it attains the
max-min fair solution. We now argue that in the large n limit the equilibrium
from user-based budget-constrained dynamic pricing also does so.

Recall that the Walrasian equilibrium [17] is defined as follows: Let mc be
the number of VMs of class c available. User i has bi = 1 units of scrip which
she uses to purchase as many VMs as she can afford at the current prices p. Let
Xi(p) be the set of VMs that user i purchases at price p, and let Ξi(p) be the set
of all optimal purchase sets. A price allocation (p,X) is an equilibrium if Xi(p) ∈
Ξi(p), i.e., all users are purchasing an optimal bundle, and

⋃
iXi(p) = M with⋂

iXi(p) = ∅, i.e., all VMs are allocated, with each VM allocated to a single user.
One can easily compute in polynomial time the Walrasian equilibrium allocation
and prices by solving a max-flow on the augmented bipartite graph in Fig. 1.

Although the utilities in the Walrasian equilibrium allocation are unique [4],
note that the equilibrium prices are typically highly degenerate.

Theorem 1. If VM classes c and c′ are both demanded by at least two users and
there exists a user who purchases VMs from both class c and c′ in a Walrasian
equilibrium, then pc = pc′ .

Proof. The fact that c and c′ are demanded by at least two users guarantees
that the equilibrium prices for these classes are positive: pc, pc′ > 0. Then if, say,
pc > pc′ > 0, then it is suboptimal for user i to request goods from class c; she
should simply make all her purchases from the lower priced class c′.

Thus, in equilibrium the prices provide little information. This raises the
question of how the users ‘know’ which classes of VMs to purchase. For example,
in the “finicky” example of Fig. 1a, in equilibrium users of group j > 0 typically
purchase VMs from classes 0 and j. However, since the equilibrium prices are
the same for both classes, they have no way of “knowing” how to divide their
demands among the two classes of VMs. For example, if there are only 2 classes,
i.e., k = 1, and there are 100 machines in each class and 10 users in each group
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then the type 1 users should each purchase exactly 10 VMs in class 1. However,
if there were 150 machines in class 0 and 50 in class 1 then the prices would be
unchanged (and still equal) yet somehow the type 1 users would be expected to
purchase 5 VMs in each class. In more complex situations (e.g., Fig. 1b) this
issue is exacerbated, and one would not expect users to purchase the correct
bundles relying solely on price information.

This price degeneracy also arises in the user-based budget-constrained dy-
namic pricing model in the large n limit under suitable parameter choices, which
we discuss now. A crucial quantity for the smooth running of user-based budget-
constrained dynamic pricing is the rate at which machines appear and are avail-
able to be bought by the users. The total rate is α (m−R(t)) + βR(t), where
R(t) is the reserve size at time t, which comes from jobs finishing and idle ma-
chines being readvertised. Since this rate is Ω (m), in order to avoid drastic price
fluctuations, it is natural to scale the price adjustment constant as ε = ε̃/m. This
leads to the price changing a constant amount over a constant amount of time,
provided that βR(t) = O(m) and ε̃ = Θ(1). If βR(t) = ω(m), then the prices
change (in fact, decrease) rapidly, adjusting to the budget shortage of the users.
Thus choosing β = Θ(m) leads to the reserve being of constant size, i.e., this
leads to efficiency.

The main observation is that the stochastic process describing our dynamic
pricing model has two time-scales. On the “fast time-scale” t, the machine al-
locations fluctuate, but the prices are essentially unchanged; while on the “slow
time-scale” τ = t/ε, the prices also change by a constant amount. There has been
significant work on multi-time-scale stochastic processes [18]. The main results
are that, under suitable conditions, (i) for the fast-time dynamics, the quantity
that changes over the slow time-scale can be considered constant, while (ii) for
the slow-time dynamics the quantity that changes over the fast time-scale can
be “averaged out”, i.e., we can assume it is in its stationary distribution.

The state-of-the-art literature for multi-time-scale stochastic processes (see [18]
and the references therein) can deal with processes on a countable state space,
and also diffusions. However, processes which combine jumps and diffusions have
received little attention to date (see [13]), and their multi-time-scale behavior is
as of yet not well understood. In our dynamic pricing model prices change of-
ten by small amounts, while allocations comprise a jump process, and so it falls
into the latter category with no known results on systems of this type. A com-
plete rigorous analysis of dynamic pricing is outside of the scope of the present
article, but based on analogies with known simpler systems, we make conjec-
tures about its long-term behavior, supported by heuristic arguments. These are
further supported by simulation results in Section 4.

In order to analyze the large system size limit, we consider the following
limiting process using replica economies [5]. Given some CCC with m, n, C and
Ci’s, we define the d-replicant of the economy by taking d copies of every user,
with the same preferences, and d copies of every VM, of the same class. This
provides a large economy which has essentially the same Walrasian equilibrium,
with same prices and allocations for each VM class and user.
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For fast time-scales, we can consider the prices as fixed and compute the
average demand for each good under this assumption. From this we can estimate
the rate and direction of the price changes at the current set of prices, which
allows us to construct a vector field of price adjustments to understand the
slow-time dynamics of the prices.

First we conjecture that the quasi-static equilibrium of the dynamic price
mechanism must satisfy the basic properties of the Walrasian equilibrium.

Conjecture 1. Consider the dynamic price mechanism under the quasi-static as-
sumptions (i.e., ε̃ = o(1)), β = Θ(d), and a d-replicated economy. Assume that
there is a quasi-static equilibrium set of prices such that for two VM classes, c
and c′, the prices satisfy pc′ − pc = Ω(d−1/2). Then, any user who purchases
O(1) VMs from class c, purchases at most o(d−1/2) VMs from class c′ with high
probability (i.e., with probability tending to 1 as d→∞; henceforth w.h.p.).

Heuristic Argument. The key idea is that once the user has sufficient budget
to buy a VM from class c, then with high probability she will get the chance
to do so before her budget increases sufficiently to be able to purchase a VM
from class c′. Let ∆ := pc′ − pc and assume that user i has a budget between
pc and pc + ∆/2. Then the expected time until user i purchases a VM of class
c is O(1/(dα)); this uses the fact that there is a constant probability of a user
being able to purchase a VM that they request, since typically there are only a
constant number of users with sufficient budget to purchase a VM (if this were
not the case, the price mechanism would raise the prices). However, assuming
∆ = Ω(d−1/2), the expected time until the budget of user i could reach pc′ is
Ω(1/(d1/2γs)). Thus for d sufficiently large, user i can rarely afford VMs from
the more expensive class c′ and the ratio of purchases of VMs in class c to those
in class c′ is o(d−1/2).

Conjecture 2. Under the quasi-static assumptions, β = Θ(d), and in a d-replicated
economy, in the limit as d→∞, there exists a unique equilibrium of the dynamic
price mechanism which is the same as the Walrasian equilibrium.

Heuristic Argument. Conjecture 1 shows that in the equilibrium the VMs and
users will partition based on (almost) equal prices, i.e., each cluster of VMs has
prices that are within o(d−1/2) of each other w.h.p. and has a related subset
of users for whom those VMs are the least expensive of their allowable VMs
so they only buy goods from that subset of VM classes. Theorem 1 shows that
the Walrasian equilibrium also must partition in this manner. The choice of
β = Θ(d) guarantees efficiency: w.h.p. only O(1) VMs are in the reserve. From
this one can see that the two equilibria must be identical, and moreover the
Walrasian equilibrium is known to exist in this setting.

Using this, we further conjecture that under the quasi-static assumptions the
dynamic pricing mechanism will converge to the Walrasian equilibrium in large
economies (d� 1).



10 Dynamic Budget-Constrained Pricing in the Cloud

Conjecture 3. Consider the dynamic price mechanism under the quasi-static as-
sumptions detailed above (i.e., ε̃ = o(1)), and β = Θ(d). Let p(d)(t) denote the
prices at time t for the d-replicated economy. For any fixed t, in the limit as
d→∞, starting from any initial condition p > 0, the prices p(d)(t) will converge
in probability to the Walrasian equilibrium.

Heuristic Argument. First, to simplify the notation assume that in the Walrasian
equilibrium all the prices p∗ are the same and that for every class c there exists
another class c′ such that some user purchases VMs from both classes. Now
consider a set of prices p > 0 where the largest price pc is unique and greater
than p∗c . Following the arguments in Conjecture 1, one can see that w.h.p. for
sufficiently large d the only users who purchase VMs in class c are those for whom
these are their only allowable machines. By assumption there exist other users
who would also be purchasing these VMs in the Walrasian equilibrium. Thus,
the demand for these VMs is lower under p then under p∗ in the equilibrium
which implies that the price adjustment process would cause this price to fall.
Similarly, if there was a unique lowest price pc′ < p∗c′ then a similar argument
would show that that price would rise under the price adjustment process. Thus,
assuming these unique highest and lowest prices, we see that the highest price
(greater than the equilibrium price) would fall and the lowest price (smaller
than the equilibrium price) would rise over time, leading to convergence at the
equilibrium prices using a contraction mapping in the L∞ norm.

To extend this to the case where prices are not necessarily unique, both in p∗
and p, uses the same reasoning but requires a detailed analysis of the underlying
bipartite graph. For example, suppose p partitions into two sets of VM classes,
one with every price equal to q and the other with every price equal to q′ with
q′ > p∗ and q′ > q. Then, either there exists some user who purchased goods
from VM classes in both subsets in the Walrasian equilibrium, in which case the
higher price class of VMs will face a drop in price, as required in the proof, or
there does not exist any such user and the two subsets do have different prices
in the Walrasian equilibrium. In the latter case, one can apply the contraction
mapping argument separately to each of the separate subsets of VM classes.

We believe that these heuristic arguments can be turned into rigorous proofs
once multi-time-scale systems of this type are well understood.

We see from these arguments that the limiting behavior of user-based budget-
constrained dynamic pricing is fair, while our example in Section 3.1 shows that
they will be efficient.

4 Simulation Results

We performed detailed simulations on the effects of user-based budget-constrained
dynamic pricing. Due to space constraints the details and figures will appear in
the full version of the paper; here we present our main conclusions.

For one, large β is necessary for efficiency, but there is a tradeoff between
fairness and efficiency. The choice of β = κm for an appropriately chosen small
constant κ (e.g., κ = 0.1) combines both efficiency and fairness.
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There is also a tradeoff between efficiency and price stability, which depends
on the price update parameter ε. Small ε leads to stable prices, but this decreases
efficiency, and a further drawback of it is that prices are slow to adapt to sudden
changes in the environment.

Finally, as the system size grows, prices and allocations converge to their
respective values in equilibrium, provided the parameters are chosen appropri-
ately. However, finite size effects are strong, resulting in price differences for
finite systems, which can be unfair.

5 Conclusions

Electronic markets used for allocating resources are becoming widespread. With
the advent of cloud computing, it is clear that these markets are here to stay,
and it is of crucial importance to understand and implement pricing mechanisms
that reach certain stringent goals—in the case of data centers where pricing is
an internal mechanism, these are efficiency and fairness.

We have introduced a user-based budget-constrained dynamic pricing mecha-
nism that can realistically be applied to systems of interest, such as those arising
in cloud computing. Its primary advantages include that it is simple, and robust
in adapting to changes in the architecture of the underlying system.

Our main contribution is the study of the allocative properties and dynamic
stability of this pricing mechanism. This is important due to issues arising from
the fact that equilibrium prices are highly degenerate in systems of interest. We
show that dynamic pricing solves this problem, by creating slight differences
in prices and thus providing incentives to move away from over-demanded re-
sources. As the size of the system grows, these differences in prices disappear,
and the prices converge to the standard Walrasian equilibrium prices.

However, importantly, finite-size effects are strong, and the allocations result-
ing from price differences can be unfair. In addition, improper choices of price
update parameters can lead to significant instabilities in prices, which could be
problematic in real cloud computing systems, e.g., by allowing manipulations
by users. We uncover key scaling rules for the parameters that reduce these
instabilities, and which therefore can be of use to system administrators.

While we have restricted our analysis to the allocation of compatible virtual
machines in this paper, we believe the extension of such budget-constrained dy-
namic pricing models to more general economies would be valuable. For example,
in cloud computing the internal pricing of resources such as CPU, memory or
data transfer, rather that just VMs, is an important issue [8], and extending our
model to that setting would be useful.
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