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Abstract. Learning with class imbalanced data sets is a challenging
undertaking by the common learning algorithms. These algorithms favor
majority class due to imbalanced class representation, noise and their
inability to expand the boundaries of minority class in concept space.
To improve the performance of minority class identification, ensembles
combined with data resampling techniques have gained much popular-
ity. However, these ensembles attain higher minority class performance
at the cost of majority class performance. In this paper, we adapt the
MultiBoost ensemble to deal with the minority class identification prob-
lem. Our technique inherits the power of its constituent and therefore
improves the prediction performance of the minority class by expanding
the concept space and overall classification performance by reducing bias
and variance in the error. We compared our technique with seven existing
simple and ensemble techniques using thirteen data sets. The experimen-
tal results show that proposed technique gains significant performance
improvement on all tested metrics. Furthermore, it also extends inherited
advantage over other ensembles of fitting parallel computation.

1 Introduction

Unexplored data keeps piling up due to flourishing of social media, e-commerce,
and bioinformatic, etc. Finding useful information from this overgrowing pile of
data is a challenging task for scientists and practitioners in machine learning
community. Among these challenges, one well established challenge to machine
learning community is known as class imbalanced learning. In binary class im-
balanced problem, one class dominates other class by large numbers of instances.
The class with substantially large numbers of instances is known as majority class
and the class with substantially less numbers of instances is known as minority
class. For example, detection of oil spills in radar images, finding cancerous cells
among non-cancerous cells, finding documents of interest in text classification,
fraud detection and so on [1],[2].

The common learning algorithms usually perform better on the majority
class as compared to the minority class. This phenomenon is based on two ob-
servations. First, the classification rules that predict minority class have higher
error rates as compared to classification rules that predict majority class in deci-
sion trees. Second, test instances of minority class are more often misclassified as
compared to majority class. These two observations are different from each other



as minority class prediction rules’s poor performance leads to poor classification
performance on majority class instances. The insight for this poor performance
by minority class prediction rules is due to the difference between numbers of
majority class instances and minority class instances. This imbalance in class
representation results from lessened minority class boundaries in concept space
and thus, contributes to poor performance of common learning algorithms [3].

It is argued that small disjuncts, overlapping, concept complexity, or u-
navailability of learning data are also important factors besides class imbal-
ance. These problems are considered characteristic of noise in data. Noisy data
degrades the performance of learning algorithms by undermining the decision
boundaries or overfitting the model by incorporating incorrect data points. This
leads to increase in concept complexity and creation of small disjuncts in the
data [4].

Furthermore, ensembles learning is a popular approach to improve the per-
formance of weak learning algorithms. Generally, we can divide ensembles learn-
ing into boosting based and bagging based ensembles. Furthermore, there is
advanced formation of bagging and boosting based ensembles known as hybrid
ensembles. These techniques make hierarchical formation of bagging and boost-
ing ensembles [5]. These ensembles of ensembles have vitalized the power of both
boosting and bagging and hence, more effective than any constituent method.

For class imbalanced problem, ensembles have been combined with the da-
ta resampling. For example, EasyEnsemble and BalanceCascade have combined
hybrid ensembles with exploratory undersampling [6]. However, these techniques
also suffered information loss problem. This is due to the fact that merely bal-
anced distribution of minority to majority class is not the optimum solution
which causes valuable information loss for majority class in undersampling and
repetition of minority class instances results in low diversity among constituen-
t weak learning algorithms in ensemble learners. Our research is motivated by
these facts and therefore, we have adapted an ensemble method known as Multi-
Boost [5] with Synthetic Minority Over-sampling TEchnique(SMOTE) [2] to ad-
dress the class imbalance, noise and complexity problem in minority class iden-
tification. The proposed technique exploits the power of underlying methods by
expanding the concept space of minority class and keeping focus on the difficult
to learn majority class instances. While, MulitBoost is an ensemble that consists
of wagging[7] and AdaBoost, where wagging subcommittees are constituted by
AdaBoost. Furthermore, new weights to instances are assigned using the contin-
uous Poisson distribution. In this method, decision committees are formed and
produces lower error rate as compared to AdaBoost or wagging alone. In addi-
tion, SMOTE is an oversampling method that generates new synthetic instances
from minority class instances. These new synthetic instances broaden the deci-
sion regions and increase the coverage of minority class. Thus, it increases the
recall of minority class instances.



2 Related Work

Owing to the ubiquitous nature of imbalanced data sets in many sensi-
tive domains, different state-of-the-art approaches have proposed over the years.
Data resampling is a widely used approach in class imbalanced learning. Da-
ta resampling techniques can be divided into undersampling and oversampling.
The most basic resampling techniques are random undersampling and random
oversampling. In random undersampling, instances from the majority class are
randomly discarded to achieve the desired class ratio. The major drawback of
this technique is loss of valuable information.

On the other hand, oversampling adds the artificial instances to the mi-
nority class. Random oversampling is the simplest method to randomly add the
instances to minority class. In addition, different advanced techniques have been
proposed to minimize the negative impact of this naive oversampling. Synthetic
oversampling is an approach that intelligently generates the minority class in-
stances. For example, Synthetic Minority Over-sampling TEchnique(SMOTE)
successfully minimizes the negative effects of random oversampling.

The second approach to handle class imbalanced problem is known as cost
sensitive learning. This approach operates based on the assumption that all er-
rors are equal by assigning different costs for classifying instances. This approach
assigns high costs to minority class instances, thus learning algorithms may give
more attention to minority class instances to learn an effective class boundary
[8]. In addition, these learning methods have drawbacks. The misclassification
cost of instances is domain dependent and not all learning algorithms are flexible
enough to incorporate cost into their mechanism.

The third approach to deal with class imbalanced problem is known as kernel
based. This approach provides sophisticated techniques to solve the class imbal-
ance problem. For example, the kernel classifier construction [9] have used or-
thogonal forward selection and a regularized orthogonal weighted linear squares
estimator. Furthermore, a kernel boundary alignment algorithm [10] was sug-
gested for adjusting the SVM class boundary.

In addition, class imbalanced learning approaches can be cross-functionally
divided according to ensemble approaches. Ensembles learning algorithms show
promising results in error reduction from weak learning algorithms. Ensembles
approaches make a committee of weak learning algorithms to form a strong
learning algorithm. Weak learning algorithms are applied as the member of a
committee to classification task and their results are aggregated as a strong s-
ingle learning algorithm. Aggregation may be performed using the weighted or
majority voting. Two main ensembles learning approaches are Adaboost and
bagging.

Ensembles learning approaches can be categorized into cost sensitive and
data resampling ensembles. In the former category, cost sensitive ensemble meth-
ods combine both algorithms and data level approaches. Cost sensitive learning
algorithms integrate different misclassification costs for each class in the learning
mechanism [11]. The later category can be divided into three further subcate-
gories. The first subcategory is boosting based. This includes SMOTEBoost



[1], RUSBoost [12], etc. In this kind of approach a data resampling technique
is merged into a boosting ensemble to address the class imbalanced problem.
In the second subcategory, data resampling techniques are combined with bag-
ging. UnderBagging, OverBagging and SMOTEBagging [13] are such methods
that use undersampling, oversampling and SMOTE techniques with bagging,
respectively. In the third subcategory, hybrid ensembles are combined with da-
ta resampling techniques. In hybrid ensemble approaches, two ensembles are
combined to take advantage of constituent. For example, EasyEnsemble, Bal-
anceCascade, etc. EasyEnsemble technique uses different independent training
sub sets of majority class and then combines them with minority class instances
for an ensemble. Then, a constituent AdaBoost ensemble is trained on each of
these independent sub sets. Finally, the results of all constituent ensembles are
aggregated.

Hence, it is an established fact that boosting reduces both bias and vari-
ance and bagging reduces variance in error. In addition, SMOTE intelligently
generates new minority class instances to extend and broaden the concept space
boundaries. To utilize the powers of these techniques, we adapted the MultiBoost
ensemble with the SMOTE to effectively address the class imbalanced problem.
We have conducted extensive experiments with our proposed technique and d-
ifferent related techniques using different frequently used class imbalanced data
sets to assert the effectiveness of our approach.

3 Preliminaries

For common expressions related to class imbalanced problem, we reserve special
symbols and characters. Let take a base classification learning algorithm L and
training set S and represents a committee of learning algorithms with H∗. Let
T subcommittees of the size

√
T are created, where H∗ = T

√
T . Suppose, S is a

sample vector of n labeled features-class pairs. Each pair (xi, yi) associates fea-
tures xi ∈ X and class yi ∈ Y. Let t is a counter that moves through a rang from
one to maximum number of iterations T , Ht be the weak hypothesis (trained
using some classification algorithm, L) trained on iteration t, and Ht(xi) be
the output of hypothesis Ht, for instance, xi. Let Dt(i) represents the weight
of the ith instance on iteration t. The committee’s classification H∗(x) is the
class that obtains the most votes from the committee members when applies to
x. Subcommittee termination index which holds information about iteration at
which subcommittee should terminate is represented by vector Ii. The percent-
age of oversampling, N and the number of nearest neighbors, nn, to be used
with SMOTE.

3.1 Synthetic Minority Over-sampling TEchnique (SMOTE).

Synthetic Over-Sampling TEchnique(SMOTE) is an intelligent oversampling
technique to deals with the class imbalanced problem. In Synthetic Over-Sampling
TEchnique(SMOTE), new synthetic instances are created of minority class by



interpolating the existing one. These new synthetic instances are created near
the minority class instances. SMOTE creates synthetic instances for minority
class based on information from nn-nearest neighbors randomly. This technique
generalized the decision boundaries for the minority class and thus address over-
fitting problem effectively.

The procedure for SMOTE is defined as follows: For continuous features
and each observation of the minority class, identify and select its nn-nearest
neighbors (number is user provided). The new synthetic instances are laying be-
tween the original instance and its nearest neighbors. First, take the difference
between the minority class instance and its neighbors. Then, multiply previous-
ly computed difference with random number between 0 and 1. Then, add this
feature vector into original feature vector. For the nominal features, take ma-
jority votes between the feature vector used for oversampling and its neighbors,
in case of tie take at random and then assign the value to newly created in-
stance. Through this method a new synthetic instance is created by using the
existing instances. In the nearest neighbors computation, SMOTE uses different
way for discrete and continue features. Nearest neighbors for discrete features
are calculated with Value Distance Metric and Euclidean Distance is used for
the continuous features.

3.2 MultiBoost.

MultiBoost is an ensemble method that combines a variant of bagging i.e. wag-
ging with the AdaBoost. In bagging, different training sets are created by sam-
pling with replacement which are equal to the size with original training set
but some instances might repeat. This is known as bootstrap samples. Multiple
weak learning algorithms are trained on these samples. At the end, these weak
learning algorithms are combined by voting. However, wagging requires learn-
ing algorithms to use instances with different weights. Wagging assigns random
weights to instances in sample and select all instances as contrast to the bagging
where random bootstrapping is used to change the probability of instances. The
instances weights are assigned by continuous Poisson distribution.

On the other hand, AdaBoost combines weak learning algorithms to for-
m a strong learning algorithm. At each iteration, a weak learning algorithm is
added and instance weights are updated based on their classification decisions.
Therefore, succeeding weak learning algorithm emphasis more on the instances
that preceding weak algorithm misclassified. MultiBoost consists of T wagged
subcommittees of the size

√
T which are formed by AdaBoost. MultiBoost sets

a target subcommittee member index, Ii which allows premature termination
of boosting subcommittee due to low or high error. On abnormal termination
of current subcommittee, it increases the size of next subcommittee and this
process repeats until the target committee size is accomplished. The final re-
sult is a weighted sum of wagging subcommittees as contrast to bagging. It is
to mention that current implementation differs from strict wagging of boost-
ed subcommittees by using same instance weights for the first subcommittee
rather than continuous Poisson distribution. It is done in the notion that first



subcommittee which uses initial equal weights for instances instead of contin-
uous Poisson distribution would increase the diversity of MultiBoost ensemble.
MultiBoost not only inherits bias and variance reduction properties from its
constituent but also offers computational edge over AdaBoost such that it is
amenable to parallel execution.

4 SMOTEMultiBoost

To adapt MultiBoost for class imbalanced learning, it is necessary to consider
the following important factors. Multiboosting reduces both variance and bias in
classification tasks but it is not adequate for imbalanced data sets. The objective
is to reduce the bias towards majority class by increasing the weights of the mi-
nority instances while keeping the performance of majority class. We introduce
the SMOTE in boosting iterations to give minority class instances higher priority
and learn broader regions for minority class. Synthetic Minority Over-sampling
TEchnique (SMOTE) is an oversampling technique that indirectly changes the
instances weights and thus incompatible with the MultiBoost because it uses
reweighting instead of resampling. As, MultiBoost uses continuous Poisson dis-
tribution for resetting the instances weights. To adapt the SMOTE, we assign the
weights to new synthetic instances created by the SMOTE. SMOTEBoost out-
performs competing methods by implementing boosting by reweighing [14]. So,
considering the potential edge of reweighting instead of resampling and to adjust
with the MultiBoost, we assign the average weight of nearest neighbors weights
to the new synthetic instances. We used this method because average weighting
performs better than other weighting approaches. The number of subcommittees
formed and their sizes are determined by user parameter. The SMOTEMulti-
Boost algorithm is shown in Algorithm 1.

In summary, the SMOTEMultiBoost algorithm is a combination of Multi-
Boost and SMOTE. SMOTEMultiBoost takes an argument T subcommittees.
Continuous Poisson distribution is used by each wagged subcommittee for set-
ting instances weights. An AdaBoost constituent is called for each subcommittee
having size equals to

√
T . For each iteration of AdaBoost, SMOTE technique syn-

thetically generates the minority class instances. To adapt with the MultiBoost,
new synthetic instances generated by SMOTE are assigned average weights cal-
culated from their nearest neighbors weights. A weak hypothesis Ht is formed
and evaluated. If classification error is too big or zero, current AdaBoost con-
stituent is aborted and a next subcommittee is formed with increased size to
compensate early termination of previous subcommittee. Finally, all subcom-
mittees are combined for weighted vote H∗.

5 Experimental Setup

We employed thirteen binary class imbalanced data sets in our experiments.
We applied different competing methods including SMOTEMultiBoost on these
data sets to compare and evaluate the effectiveness of our proposed method.



Algorithm 1 SMOTEMultiBoost

Input Data set, S. A weak learning algorithm, L. Number of iterations, T . Vector,
Ii where i ≥ 1. SMOTE percentage, N .

1. S′ = S with instance weights assigned to be 1.
2. Set k = 1.
3. For t = 1 to T {
4. If Ik = t then
5. Reset S′ to random weights obtained using continuous Poisson

distribution.
6. Normalize S′ to sum to 1.
7. Set k=k+1.
8. Create temporary training data set S′t with distribution D′t by generating

N synthetic instances from minority class Cm using SMOTE.
9. Normalize S′t to sum to n.

10. Ht = L(S′t)

11. et =

P
xj∈S′

t
:Ht(xj)6=yj

D′
t(xj)

n

12. If et > 0.5 or et = 0 then
13. Go to step 5
14. βt = et

1−et
15. For each xj ∈ S′t,

16. Dt+1(xj) =
Dt(xj)

Zt
×
�
βt if Ht(xj) 6= yj

1 othewise
where Zt is a normalization constant which enable Dt+1 to be a distribution

17. }

Output the final classifier:
H∗(x) = argmaxy∈Y

P
t:Ht(x)=y

log 1
βt

.

5.1 Data sets.

We used binary class data sets in our experiments with different ratios of the
majority to minority class. We used publicly available data sets from KEEL data
repository [15] along with some used in [1]. Detail statistics of these data sets are
described in table 5.1. In the Satimage data set all classes are collapsed except
smallest class into one so that we can get binary skewed data set.

5.2 Evaluation Metrics.

In this paper, we employed different performance evaluation metrics to evaluate
the performance of the proposed method. For classification problems contingency
table or confusion matrix is widely used. Accuracy is a commonly used measure in
classification problems. However, we can not measure rigorously the performance
of learning algorithms on skewed data sets with accuracy. Therefore, first, we
used Geometric Mean(G-mean) in our experiments. True positive rate (Acc+),



Table 1. Statistics of the data sets are used in our experiments include data set names,
sizes, imbalance ratios (IR) and number of attributes. The table is sorted according to
IR.

Data Set Size IR #attri

Ionosphere 351 1.79 34
Glass1 214 1.82 9
Wisconsin 683 1.86 9
Pima 768 1.87 8
Phoneme 5403 2.4 5
Yeast1 1484 2.46 8
Vehicle2 846 2.88 18
Vehicle1 846 2.88 18
Hepatitis 155 3.84 19
Satimage 6435 9.28 36
Glass-0-1-6-vs-2 192 10.29 9
Ecoli-0-1-4-7-vs-2-3-5-6 336 10.59 7
Mammography 11183 42 7

true negative rate (Acc−) and G-mean can be represented as:

TruePositiveRate(Acc+) =
TP

TP + FN
(1)

TrueNegativeRate(Acc−) =
TN

TN + FP
(2)

G−mean =
È

(Acc+)× (Acc−) (3)

Second, we used F-measure in our experiments. F-measure uses both preci-
sion(p) and recall(r) to calculate the score. Recall(r), precision(p) and F-measure
are calculated as:

recall(r) =
TP

TP + FN
(4)

precision(p) =
TP

TP + FP
(5)

F −measure =
2pr

p + r
(6)

Finally, we used ROC curve in our experiments. A receiver operating character-
istic (ROC) curve is a two-dimensional representation of classifier performance
using false positive rate(fpr) on x-axis and true positive rate(tpr) on y-axis.

5.3 Evaluation Algorithms.

We used eight different learning algorithms for our experiments. These are
CART, MultiBoost, SMOTE, BalanceCascade, EasyEnsemble, RUSBoost, S-
MOTEBoost and our proposed SMOTEMultiBoost(SMB). We used CART as



baseline with default parameters except pruning set to false. Three different
class distributions with 35%, 50% and 65% are used in our experiments. Five
nearest neighbors are used in SMOTE. The number of subcommittees and size
of those subcommittees for MultiBoost and SMOTEMultiBoost(SMB) are set
to three. Thus, it became total nine classifiers. Similarly, nine classifiers are
used for RUSBoost, SMOTEBoost, EasyEnseble and BalanceCascade, for fair
comparison. Experiments are conducted using WEKA. Ten fold cross validation
is employed as the evaluation mechanism and each experiment is repeated ten
times.

6 Experimental Results and Analysis

The class imbalanced learning algorithms are designed specifically for imbal-
anced data sets. These algorithms try to improve the prediction performance of
minority class while keeping the prediction performance of the majority class.
It is preferable for learners in class imbalance problem to have higher value for
true positive rate which also known as accuracy over minority class. On the
other hand, it is also preferable to maintain accuracy over majority class known
as true negative rate. Our proposed approach focuses on both true positive rate
and true negative rate represented by G-mean measure. We report only perfor-
mance of learning algorithms using 65% minority class distribution on all data
sets using G-mean and F-measure in Tables 2, and 3, respectively.

G-mean values are depicted for all eight techniques in Table 2. From the
table, it is observable that our technique performs better than all other com-
peting techniques. EasyEnsemble and BalanceCascade are failed by performing
nowhere close to the oversampling methods even RUSBoost. The poor perfor-
mance of these methods can be characterized as the rarity of minority class
instances in the data sets. The instances of minority class are already rare, naive
undersampling of a majority class to achieve a balanced class distribution with
the minority class causes the majority class instances rare as well. However, both
SMOTE and SMOTEBoost preform well and their performance is closest to our
method.

Similarly, values of F-measure are depicted in Table 3. From the table,
it is apparent that our technique outperformed all other techniques except in
Hepatitis and Mammography data sets. Additionally, SMOTE and SMOTE-
Boost are competing methods with no clear winner on given metrics. We assert
the statistical significance of the performance gain using Friedman test[16]. In
our experiments, we used SMOTEMultiBoost as base learner. SMOTEMulti-
Boost(SMB) shows significant (p < 0.05) performance gain over all other meth-
ods using G-mean and F-measure metrics. These statistical significance gains
have been depicted with stars in Tables 2, 3.

Furthermore, Figure 1 depicts ROC curves produced by different techniques
including our technique on thirteen data sets. For the mammography data set,
CART, EasyEnsemble and BalanceCascade do not perform any better than ran-
dom prediction. For all data sets the performance of our methods is better than



Table 2. Performance comparison of different methods including our proposed S-
MOTEMultiBoost(SMB) on various data sets using G-mean. In table, text with star
shows statistical significance at (p < 0.05) using the Friedman test with respect to
SMOTEMultiBoost(SMB) as Base learner and all other methods

Data Set CART MultiBoost SMOTE BalanceCascade EasyEnsemble RUSBoost SMOTEBoost SMB

Ionosphere 0.8774(8) 0.9102(6) 0.9490(3) 0.9226(5) 0.9063(7) 0.9600(2) 0.9455(4) 0.9779(1)
Glass1 0.7259(8) 0.7616(7) 0.9204(2) 0.8154(5) 0.7770(6) 0.9169(4) 0.9194(3) 0.9762(1)
Wisconsin 0.9451(8) 0.9627(7) 0.9842(2) 0.9707(5) 0.9660(6) 0.9820(4) 0.9868(3) 0.9975(1)
Pima 0.6701(8) 0.6952(7) 0.8855(4) 0.7270(6) 0.7325(5) 0.8873(3) 0.8992(2) 0.9633(1)
Phoneme 0.8372(8) 0.8701(7) 0.9402(3) 0.9060(5) 0.8737(6) 0.9389(4) 0.9508(2) 0.9831(1)
Yeast1 0.6420(8) 0.6493(7) 0.8935(3) 0.5565(6) 0.6840(5) 0.8662(4) 0.9030(2) 0.9650(1)
Vehicle2 0.9396(8) 0.9685(7) 0.9889(3) 0.9856(4) 0.9752(6) 0.9772(5) 0.9904(2) 0.9980(1)
Vehicle1 0.6498(7) 0.6577(6) 0.9176(3) 0.5565(8) 0.7181(5) 0.8771(4) 0.9252(2) 0.9790(1)
Hepatitis 0.5910(8) 0.6560(6) 0.8357(4) 0.7556(5) 0.6114(7) 0.9072(1) 0.8721(3) 0.8858(2)
Satimage 0.7302(7) 0.7395(6) 0.9628(2) 0.4124(8) 0.8097(5) 0.9162(4) 0.9627(3) 0.9919(1)
Glass-0-1-6... 0.4124(6) 0.3626(7) 0.9321(2) 0.3526(8) 0.4671(5) 0.8040(4) 0.9268(3) 0.9675(1)
Ecoli-0-1-4-7... 0.8084(7) 0.8266(6) 0.9440(2) 0.4662(8) 0.8372(5) 0.9092(4) 0.9377(3) 0.9790(1)
Mammography 0.0273(8) 0.5011(5) 0.7685(1) 0.4569(7) 0.4775(6) 0.6762(4) 0.7432(3) 0.7511(2)

Average Rank 7.61 6.46 2.61 6.15 5.92 3.61 2.69 1.15

Friedman Test ? 3.11491E-4 ? 3.11491E-4 ? 0.00228 ? 3.11491E-4 ? 3.11491E-4 ? 0.00228 ? 3.11491E-4 Base

Table 3. Performance comparison of different methods including our proposed S-
MOTEMultiBoost(SMB) on various data sets using F-measure. In table, text with
star shows statistical significance at (p < 0.05) using the Friedman test with respect
to SMOTEMultiBoost(SMB) as Base learner and all other methods

Data Set CART MultiBoost SMOTE BalanceCascade EasyEnsemble RUSBoost SMOTEBoost SMB

Ionosphere 0.8493(8) 0.8944(7) 0.9552(2) 0.9537(5) 0.9388(6) 0.9574(4) 0.9551(3) 0.9794(1)
Glass1 0.6522(8) 0.7014(7) 0.9384(2) 0.8841(5) 0.8465(6) 0.9117(4) 0.9365(3) 0.9802(1)
Wisconsin 0.9276(8) 0.9501(7) 0.9885(3) 0.9766(5) 0.9741(6) 0.9806(4) 0.9901(2) 0.9981(1)
Pima 0.5800(8) 0.6123(7) 0.9127(3) 0.7907(5) 0.7800(6) 0.8810(4) 0.9190(2) 0.9697(1)
Phoneme 0.7777(8) 0.8228(7) 0.9572(3) 0.9357(4) 0.8990(6) 0.9347(5) 0.9601(2) 0.9860(1)
Yeast1 0.5190(8) 0.5353(7) 0.9062(3) 0.8430(5) 0.8161(6) 0.8596(4) 0.9103(2) 0.9707(1)
Vehicle2 0.9123(8) 0.9553(7) 0.9921(4) 0.9924(3) 0.9866(5) 0.9753(6) 0.9927(2) 0.9984(1)
Vehicle1 0.5098(8) 0.5330(7) 0.9416(3) 0.8681(5) 0.8515(6) 0.8728(4) 0.9421(2) 0.9843(1)
Hepatitis 0.4300(8) 0.5201(7) 0.8316(6) 0.8811(4) 0.8837(2) 0.9051(1) 0.8723(5) 0.8827(3)
Satimage 0.5692(8) 0.6365(7) 0.9722(2) 0.9574(5) 0.9631(4) 0.9118(6) 0.9688(3) 0.9931(1)
Glass-0-1-6... 0.2319(7) 0.2164(8) 0.9468(2) 0.9414(4) 0.9440(3) 0.8057(6) 0.9349(5) 0.9684(1)
Ecoli-0-1-4-7... 0.6863(8) 0.7545(7) 0.9253(4) 0.9685(3) 0.9741(2) 0.9070(6) 0.9226(5) 0.9803(1)
Mammography 0.0035(7) 0.0023(8) 0.8666(1) 0.4900(6) 0.6754(4) 0.6442(5) 0.8121(2) 0.7236(3)

Average Rank 7.84 7.15 2.92 4.53 4.76 4.53 2.92 1.30

Friedman Test ? 3.11491E-4 ? 3.11491E-4 ? 0.00228 ? 3.11491E-4 ? 0.00228 ? 0.00228 ? 0.00228 Base

any other method. The performance of SMOTE, RUSBoost and SOTEBoost is
better than BalanceCascade and EasyEnsemble on all data sets. SMOTE and
SMOTEBoost are competing with each other followed by RUSBoost. It is gen-
erally observed that resampling degrades the performance of the majority class.
However, the domination of our technique in ROC space over all other techniques
indicates that inherited power of wagging, boosting and SMOTE reduce the er-
ror and thus increase in true positive rate and decrease in false positive rate.
We conducted experiments with different techniques including our technique on
thirteen data sets with three different minority to majority class distributions
(35%, 50%, 65%). There is no clear trend which distribution produces better
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Fig. 1. Comparison of CART, MultiBoost, SMOTE, BalanceCascade, EasyEnsemble,
RUSBoost, SMOTEBoost and SMOTEMultiBoost(SMB)on all data sets. SMOTE-
MultiBoost(SMB) dominates over all other techniques in the ROC space.

results than other. However, it is apparent that suitable distribution is the at-
tribute of the particular data set. An interesting thing to mention is that the
G-mean, F-measure and ROC curve of the RUSBoost is generally better than
EasyEnsemble and BalanceCascade. This is probably due to the fact that only
balanced distribution of minority to majority class is not suffice because majority
class undersampling causes valuable information loss and repetition of minority
class instances causes low diversity.

7 Conclusion

In this paper, we propose SMOTEMutliBoost learning algorithm for class imbal-
anced data sets. MultiBoost ensemble is combined with SMOTE oversampling
to improve the prediction performance of minority as well as majority class.
MultiBoost is an ensemble that combines the wagging with boosting to reduce
the error due to bias and variance. Experiments with SMOTEMultiBoost on a
wide collection of data sets and comparison with other learning algorithms show
that our technique is able to accomplish higher G-mean, F-measure values and is
dominate in ROC space. This endorses our hypotheses that combining SMOTE
with MultiBoost ensemble is a good approach for dealing with class imbalance.
Furthermore, SMOTEMultiBoost inherits the MultiBoost’s parallel computa-
tional edge over other boosting techniques. In our future work, we will further
investigate effectiveness of our approach with more exhaustive experimental set-
up that includes large data sets with high imbalance ratios and increased number
of subcommittees and their sizes.
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