
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Semi-Supervised Product Specification Extraction from
Web Pages

Abstract. This paper introduces an algorithm that utilizes the inductive semi-
supervised learning strategy – self-training model for extracting property-value
pairs from a collection of Web pages. The algorithm employs a novel concept
of short proper-ties and values for learning high confidence property-value pair
seeds. The seeds are then used to discover repetitive HTML formatting patterns
and consequently, using these patterns as the wrappers to extract the rest of the
property-value pairs that the Web page contains. The experimentations on the
collection of Web pages, drawn from over ninety diverse, real life electronic
goods retailer Web sites shows promising results. The corpus of over one hun-
dred Web documents can be processed on a commodity hardware within a few
minutes and deliver as much as 99% precision and 97% recall.

Keywords: Web Information Extraction, Product Name and Value Extraction

1 Introduction

With billions of dollars already spent by digital shoppers each year and favorable
forecasts of capturing even larger share of sales in the near future, online retail is one
of the fastest growing industries. The boom in e-commerce in turn gave rise to online
aggregators – search engines, comparison shopping sites, shopping portals, deal and
auction sites that help users to sift through the retail debris. However, each online
aggregator initially faces extremely challenging problem of building a cohesive prod-
uct catalog, which can be leveraged for smarter search and better customer experi-
ence.

The information about the product that aggregators are interested in is very vola-
tile. It is frequently updated and typically generated dynamically on the fly when a
user wants to see the product specifications. The specification Web pages, similar to
one shown in Fig. 1, are crawled from the diverse e-commerce sites which vary in
HTML formatting and optimized for human browsing rather than machine processing.
There are several irregularities in the presentation of product property-value pairs
(PVPs) on numerous retailers’ Web sites, such as layout formats that range from regu-
lar table, list to unstructured free text, usage of different product properties or differ-
ent names of the same properties or values (i.e., synonymous words or phrases having
the same or similar meaning, abbreviations), different ordering of properties from site
to site as well as omission of some PVPs or values even on the same site. Additional-
ly, the product detail pages, besides product specifications contain several other
blocks of information. For example, as shown in Fig. 1, the leftmost block is a naviga-
tion bar that contains links for browsing the Web site inventory. There are also other
tabs alongside the “Specifications” (highlighted with the red dashed box) that provide

additional information about the product as well as customer reviews. Although these
additional informational blocks can enhance consumer appeal, usability, and visual
attractiveness, it brings great challenge for locating the PVPs on the page in order to
automatically extract them.

Fig. 1. A fragment of a product specification page.

The key objective of our work was to develop an efficient algorithm capable of
tackling the presentation irregularities and specification block identification challeng-
es and extracting the data of interest across different sites. We employ semi-
supervised machine learning and pattern mining techniques for discovering and ex-
tracting property-value pairs from product specification Web pages. In our self-
training machine learning model, we introduce the novel concept of short properties
and values for learning high confidence PVP seeds. The seeds then used to discover
the repetitive patterns of HTML formatting then using these patterns extract the rest
of the property-value pairs that the Web page contains.

2 Related Work

The procedure for extracting content from a Web page based on the knowledge of
its format is often referred to as "wrappers" and the process of information extraction

(IE) is known as Wrapper Induction (WI). Formally, a wrapper is a function for ex-
tracting the relational content from a Web page while discarding the irrelevant text
[7]. The main wrappers’ assumption is that repetitive patterns that occur in a Web
page or multiple pages conform to a common template. The goal of WI is to automat-
ically generate a wrapper that is used to extract the targets for an information re-
source.

In a supervised wrapper induction [6, 11], a set of extraction rules are learnt from a
set of manually labeled pages then these rules are used to extract data items from
similar pages. Because manually labelling pages is labor intensive, much effort has
been devoted to automating the wrapper generation process [2]. Beginning with
IEPAD [3], RoadRunner [4], and ExAlg [1], the tendency has been to build systems
that employ semi-supervised or unsupervised ML techniques for either learning or
identifying repetitive patterns in a Web page or across multiple pages. The works by
Wu et al. [12], Zheng et al. [13], Tang et al. [9], and Wang & Cohen [10] conform to
this trend.

Tang et al. [9] proposed an unsupervised adaptive template based method to simul-
taneously extract name-value pairs (NVPs) from e-commerce sites. Tang et al. first
construct the attribute word bag using Web titles from a single domain. The selection
of candidate name-value pairs is based on their organization in DOM tree: adjacent
text nodes or the same text node but separated in some way (e.g. ":”). The bag of
words is then used to learn high-quality page templates by selecting most frequent
patterns across multiple pages. In the next step, attribute-value pairs are extracted
from the page by matching each of these templates. Many ideas from Tang et al. re-
search, such as the domain-specific word bag, page preprocessing, noise filtering are
adopted in our work.

Zheng et al. [13] introduced an analogous system but utilizing a template-
independent method. The system uses short listing of products to find the link to the
offer then retrieves and extracts data from “data-intensive page" – a page that contains
detailed product information. It also relies on a set of manually collected attribute
name synonyms for a given domain and relies on the assumption that attributes occu-
py a contiguous region in a “data-intensive” page. Thus, the main goal of their ap-
proach has been to identify the "data-rich region" boundaries of a specific product.
These regions are identified by calculating and comparing structural-semantic entropy
of the nodes in a DOM tree. For the experiments reported in [13] authors used an
open source HTML parser to clean up the bad HTML tags and automatically close
elements with optional end tags. Similar functionality to "fix up" many common mis-
takes in HTML documents has been implemented in our work.

Wu et al. [12] also proposed template-independent method, which uses few manu-
ally labeled pages for a domain. The labeled pages are combined with unlabeled ones
to boost the learning of candidate attributes using a co-training algorithm with Naïve
Bayesian classifier. The candidates are used to identify product specification block on
the page. Wu et al. [12] based their method on the hypothesis that the attribute name
and value presented together (i.e., they are contiguous and aligned horizontally or
vertically) on the "product details" page. Our algorithm bears some similarity to this

work. We also used analogous hypothesis about property and value alignment on the
page and semi-supervised ML approach for learning the PVP seeds.

The Set Expander for Any Language (SEAL) system developed by Wang & Cohen
[10] expands a partial set of “seed” objects into a more complete set by constructing
page-specific extraction rules (character-level wrappers) that are independent of the
human language and markup language of the Web pages. The system can expand sets
of category instances as well as binary relation instances. SEAL extracts named enti-
ties with wrappers, each of which is composed of a pair of character-level prefix and
suffix. The algorithm finds maximally long contextual strings that bracket at least one
seed instance of every seed using PATRICIA tries (Practical Algorithm to Retrieve
Information Coded in Alphanumeric [5, 8]). Wang & Cohen described in detail an
algorithm for constructing document-specific wrappers automatically and experimen-
tally illustrated that character-based wrappers are better suited than HTML-based
wrappers for the task of set expansion. Although the main focus of Wang & Cohen
was on developing algorithm for named entity extraction, they also presented a meth-
od, which utilizes an additional middle context, for constructing wrappers for binary
relation instances (i.e., “Ford”\“USA”, “Nissan”\“Japan”). The method is language-
independent and can be applied to property-value extraction from semi-structured
documents. Our work is inspired by the SEAL experimental results. The algorithm for
constructing wrappers described in [10] is a pivotal point of our research.

3 Proposed Technique

In order to discover patterns and extract PVPs from product specification Web
pages, we propose a semi-supervised template-independent method. As illustrated in
Fig. 2, the method contains four main tasks: preprocessing, seed learning, pattern
discovery, and pattern-based extraction.

The automated discovery of patterns and extraction of the property-value pairs for
each product domain is preceded by the initial semi-automated assembling of domain
dictionary (aka training set, aka classifier features set) of short properties and values.
The semi-automated process is shown in the dashed box in Fig. 2 on the left of the
main process. The process uses a small subset of preprocessed product specification
pages from a specific domain (e.g., 10 pages) and user-provided seeds to automatical-
ly discover patterns and extract property-value pairs. The extracted short property-
value pairs during this stage serve as the initial training set for the semi-supervised
machine learning algorithm of the main process. The following subsections present
the details of the four steps of the proposed technique.

3.1 Preprocessing

To reduce the amount of characters that need to be processed by character-level
pattern discovery algorithm, the input HTML document is parsed chunk-by-chunk and
converted to a clean source document. The chunks are the open tags, closed tags, and
the text between the tags, which are referred to as the text chunks in this paper. A text

chunk may contain irrelevant text (i.e., neither property nor value, nor PVP) or either
property or value, or PVP.

Fig. 2. Semi-supervised property-value pairs extraction algorithm

According to the relative position of a property and value, the existing method as-
sumes that a Web page may meet two conditions:

─ the product property name and value, which constitute a PVP, organized in differ-
ent but adjacent text chunks (e.g., <tr><td>Camera resolution</td><td>3.5 mega-
pixels</td></tr>);

─ the product property name and value belong to the same text chunk and separated
by the colon symbol “:” (e.g., Camera resolution: 3.5 megapixels)1.

During the conversion process, any tags that are on the tag exclusion list (i.e., the
tags that certainly do not surround PVPs such as, header, script, etc.) and text chunks
between these opening and closing tags are skipped and those that are not, saved to a
new document. Before saving the tags and the text chunk to a new document, first, the
new line symbols, tabs, and extra white spaces are removed. Next, for the tags with
attributes, the unique (i.e., id and name) attribute values are removed and the rest of

1 A detailed analysis of a vast number of the products’ specification Web pages revealed that

the colon symbol “:” is the most common property and value separator.

the attributes are stripped of all the symbols, white spaces, and numbers (e.g., <th
scopecolclassspecvaluecol>). The text chunks are checked for “:” separator and only
the first “:” in the chunk is retained if there are more than one separator in the text
chunk. Additionally, we automatically close <tb>, <th>, and tags if they do not
have corresponding closing tags.

3.2 Seed Learning

Our ML approach to seed learning employs an inductive semi-supervised learning
strategy – self-training model and is based on the observation that there is a limited
number of common to any product domain as well as specific to each product do-
main short property-value pairs (e.g., Weight: 1 kg, Display Resolution: 1024 × 768).
These short PVPs are extracted from the training set of the Web pages and used for
building classifier’s feature set. Because of the limited number of common short
PVPs and very little variety of their unique spelling, no typical NLP preprocessing
required (i.e., POS tags, stemming, etc.); the classifier does not need a large training
set, and the number of features does not grow endlessly during semi-supervised learn-
ing.

Another key parts of this approach are the two following assumptions: (1) a prop-
erty always comes before a value, and (2) there must be a pattern(s) in PVPs format-
ting. If there is a pattern(s) then only a small number of PVPs are required to discover
it (i.e., as few as 2). Therefore, only those learned PVPs that the classifier is the most
certain of are selected (i.e., learned PVPs with the highest scores). After classification
is done, the text chunk classified as property is selected as a part of PVP seed only if
it is directly followed by the text chunk classified as value. The learned PVPs are then
used as the seeds for pattern discovery. Using the discovered pattern, new PVPs are
extracted, added to the training set and then used in subsequent classification task.

During the seed-learning task, the system uses the dictionary of short property and
values which are semi-automatically assembled once for each product domain and
used as the training set for classifier in order to learn new short properties and values
on the test page. The dictionaries are the property and value Bag-of-Words (BOW)
and n-grams (NGRAM) of properties and values. The BOW dictionary contains
words found in short properties and values disregarding word order. The NGRAM
dictionary (i.e., bigram, trigram,… n-gram where n is the number of tokens) contains
entries of a property or value text string with removed white spaces between the
words (e.g., CAMERARESOLUTION); thus preserving the word order. As the eval-
uation of our algorithm indicate, the BOW results in higher recall and the NGRAM in
higher precision. Therefore, both of them are used in the following fashion: first we
attempt to find seeds using NGRAM approach, then, if we do not succeed (i.e., num-
ber of found seeds is less than two) and only then, we use the BOW approach.

3.3 Pattern Discovery

To discover patterns, we first find all instances of the provided seed within the
document of interest. The instances are grouped by the context that separates proper-

ties and values. The middle context as well as three-character long left and three-
character long right context is maintained with each instance.

Next, we then filter out the seed instances that do not have at least one counter-part
with the same left, mid, and right context. After filtering the instances, the PVPs are
joint together using mid context (e.g., Color</td><td>Black) then for each joint string
we extract and insert into two PATRICIA tries left character string (starting from the
first character of the document) and right character string (ending at the last character
of the document) which is inserted in reversed character order. The tries maintain a
list of ids for every node in order to keep track of the seed instances that follow the
string associated with that node.

Finally, the algorithm proposed in [10] for constructing unary wrappers is exploit-
ed to find maximally long contextual strings that bracket at least one seed instance of
every seed. The patterns are assembled for PVP extractions using the found left and
right contextual strings and the middle context of the group of seeds.

3.4 Pattern-based Extraction

First, the patterns assembled using the longest character-level prefixes and suffixes
found in Step 3 are normalized by removing all the incomplete tags (i.e., /td>), tags
that have no matching opening or closing counterparts, and tags that surround other
tags, such as table, table row tags which surround table cell tags (i.e., < table>,
<thead>, <tbody>, <tr>), and list tags (i.e., , , <dl>).

Then, the normalized patterns are considered as regular expressions (RegEx) (e.g.,
<tr><td>(.*?)</td><td>(.*?)</td></tr>) and used for extraction of PVPs. The RegEx
is applied to the document of interest in both directions: left-to-right and right-to-left
then the two groups of regular expression matches are used to assemble property-
value pairs. The reason for two-directional application is that in some cases, specifi-
cally with patterns based on , <p>, or <div> HTML blocks, the first property
or the last value of extracted PVPs may include extra markup and text. When left-to-
right and right-to-left extracted PVPs do not match exactly, the system validates inner
HTML of non-matching items and selects the shorter strings that do not contain any
markup or longer strings only if they have valid HTML.

When all the PVPs are extracted, the short PVPs (i.e., three-token property and
three-token value) are added to the dictionaries and their counts of occurrences are
increased. These PVPs are used in the training set for the subsequent classification.
Finally, the discovered patterns and extracted PVPs are saved to the database.

4 Evaluation

4.1 Document Corpus and Experimental Design

The evaluation of the proposed approach was performed using a corpus of 108
product specification Web documents (similar to one shown in Fig. 1), and the stand-
ard IE performance measures of precision, recall, and F1 score were measured. The
corpus used in the experiments contained documents from two electronic goods’ do-

mains – Digital Cameras (56 documents) and Smartphones (52 documents). In order
to have unbiased evaluation results, the corpus was collected from 92 distinct elec-
tronic goods retailers’ Web sites.

The entire corpus was semi-automatically processed, that is PVPs were extracted
from each document using few (i.e., two to five) seeds identified on the page and the
implemented pattern discovery algorithm, then manually examined, edited and to-
gether with missed PVPs (i.e., not extracted by algorithm for some reasons) combined
into page item set – a set of actual PVPs that the document contains. The page items
of each document were saved to the database and served as the ground truth test data
set in order to benchmark our proposed algorithm. Ten documents from each product
domain and their page items also served as the seeds for performing semi-supervised
learning.

The algorithm evaluation experiments were performed for two types of PVP ex-
tractions: (1) utilizing known seeds (i.e., user provided seeds), in order to assess effec-
tiveness of the pattern discovery functionality, and (2) utilizing learned seeds, in order
to identify best suitable ML classifier and corpus processing strategy.

4.2 Pattern Discovery Evaluation

To evaluate the effectiveness of the developed PVPs pattern discovery, the extrac-
tion accuracy using known seeds were compared with the manually annotated, ex-
pected extractions of the corpus (i.e., page items). To infer the unbiased performance
of the algorithm, the precision, recall, and F1 scores were calculated for exact match-
es (i.e., actual PVP matched expected PVP word-for-word) and for partial matches
(i.e., actual PVP was close enough to expected PVP but contained some additional,
irrelevant words or had some words missing). The partial matches occurred in the
documents that had very uncommon, unique PVP formatting (e.g.,
<p>(.*?)
(.*?)</p>).

Table 1. Results of the pattern discovery algorithm performance utilizing known seeds

 Expected Actual TP FP FN Precision Recall F1

Exact 4848 4841 4790 51 60 99.34% 98.90% 99.11%

Partial 4848 4841 4827 15 22 99.77% 99.37% 99.55%

TP – true positive, FP – false positive, FN – false negative.
 The first two columns in the Table 1 display total number of all corpus PVPs that
were expected and actually extracted respectively. In the first row of the table the
partial match extractions were counted as both – False Positive and False Negative
extractions; in the second, they were counted as True Positive extractions. As the test
results indicate, the implemented pattern discovery algorithm is a great tool for learn-
ing formatting patterns in HTML documents, which delivers impressive performance
with precision and recall being around 99%.

4.3 Machine Learning Approach Evaluation

The main goal of ML experiments was to achieve similar recall, precision, and F1
score to the ones attained in the pattern discovery evaluation – close to 99%. To find
the best suited classifier for the task, three different text classifiers were integrated
into the in-house application and extensively tested.

Classifiers
Microsoft Infer.NET sparse Bayes Point Machine (BPM). For BPM classifier, the

initial domain dictionary of short properties and values words (tokens) serves as the
set of features and the documents that the dictionary is built on – as the training da-ta.
The test data is represented by a vector whose dimensions are equal to the number of
features. The BPM uses Bernoulli model of features (i.e., binary occurrence infor-
mation) ignoring the number of occurrences. The train\test text string is represented as
one raw string similar to the following comma separated values:
1,0,0,0,1,0,0,0,0,0,0,0,0,…, where the numbers mark the presence of a word (i.e.,
feature) in the train\test text string. The position within the string indicates ordinal
position of the feature in the dictionary. This dense data is made sparse by ignoring 0s
and is fed to the sparse BPM.

Support Vector Machine (SVM) – the .NET conversion of LIBSVM from Matthew
Johnson. The SVM classifier uses the same set of features as BPM. The SVM takes
into consideration the number of occurrence of a feature in the training set. The tested
text string is represented similar to the following csv: 1:3,32:1,56:45, where the first
number is the ordinal of the feature and second is the number of occurrence of the
word in the training set.

Naïve Bayes (NB) – a custom implementation of a simple Naïve Bayes multiclass
classifier is used. The classifier matches provided test set with available training set. It
calculates the score (i.e., prior probability) of every individual token then performs
the sorting operation on the probabilities. If the probability of multiple items is the
same, this implies that it is an undetermined category; in other words, the classifier
cannot decide which category it belongs to because of a lack of information.

Results
In order to determine the best classifier for the task, we compared the performance

of BOW and NGRAM feature type for each classifier. The BOTH type works in the
following fashion: first the system attempts to find seeds using NGRAM approach,
then, if it does not succeed (i.e., number of found seeds is less than 2) and only then, it
uses BOW approach. The chart in Fig. 3 shows that the BOW results in higher recall
and NGRAM in higher precession, and all classifiers deliver identical results with
BOTH feature type setting. The BOTH approach smoothens the difference between
BOW and NGRAM precision and recall and delivers highest F1 score – 95.61%.
Therefore, since all classifiers with BOTH settings deliver identical precision and re-
call, the only performance indicator that discriminates them is the task execution time:
around 8 min for BPM, 7 min for SVM, and 2 min for NB on commodity hardware.

Thus, NB classifier was selected as the best suited classifier for the task because it
takes the least amount of time to process a corpus of over one hundred documents.

Fig. 3. Feature type evaluation results.

After the classifier was selected we conducted an experiment to determine the cor-
pus processing strategy that will deliver highest precision, recall, and F1. We com-
pared four different strategies with each other as well as with corpus processing re-
sults utilizing known seeds. The four strategies as follows:

1. One iteration NB BOTH plus an extra iteration with BOW features and increased
token limit. The NB BOTH processing was enhanced with an extra iteration in
which the failed documents (i.e., documents that did not produce any extractions)
were processed with BOW features and increased by two token limit. The token
limit is the maximum number of words of property and value in short PVP that the
system uses as the training data. The purpose of increasing the token limit is to
successfully process the Web documents that might not have enough 3 token PVPs
(default) for discovering patterns (i.e. less than two short PVPs per page).

2. One iteration NB BOTH with 20 training set pages plus an extra iteration with
BOW features and increased token limit. The same arrangements as in the previous
strategy was used but the training set consisted of 20 corpus documents that con-
tained the maximum number of PVPs. The aim was to test if doubling the training
data will have positive effect on the processing results.

3. Two iteration NB BOTH plus an extra iteration with BOW features and increased
token limit. The first iteration was performed with the default settings. In the se-
cond iteration, all documents were processed using features collected during the
first iteration and only the features that do not already exist in the dictionary of
short properties and values were added to the list.

4. Three NB NGRAM iterations plus an extra iteration with BOW features and in-
creased token limit. The aim of this strategy was to test if using primarily NGRAM
features would reduce the number of erroneous extractions. The second and extra

iterations were similar to the ones used in the previous strategies. In the third itera-
tion though, only the failed pages were processed using BOW features and no fea-
tures were added in this iteration to the dictionary of short properties and values.

Fig. 4. Corpus processing strategies evaluation.

The chart in Fig. 5 illustrates that the two iterations with BOTH features and an ex-
tra iteration with BOW features and increased token limit to process documents that
might not have enough 3-token properties and values delivers the best results. The
impressive 98.25% F1 score is very close to the one achieved after processing the
corpus utilizing known seeds. Although these results are generalizable to the extent
that the two specific domain areas that we have worked with are generalizable, we
believe that the proposed technique can easily be extended to include other product
domains. However, greater variety of domains needs to be used in order to get more
conclusive result.

5 Conclusions

In this paper, we proposed an algorithm, for extracting property-value pairs from a
collection of Web pages. The algorithm employs inductive semi-supervised learning
strategy – self-training model and a novel concept of short properties and values for
learning high confidence property-value pair seeds. The seeds are used to discover
repetitive HTML formatting patterns and consequently, using these patterns as the
wrappers, we extract the rest of the property-value pairs that the Web page contains.
The key feature of this approach is the focus on semi-supervised learning of a limited
number of short property-value pairs per product domain, which normally do not vary
in spelling. It greatly reduces the annotation effort and amount of data (i.e., Web page
content) that needs to be processed, streamlines the ML task because no typical NLP
preprocessing is required (i.e., POS tagging, stemming, etc.), and allows usage of
simplistic classifiers such as Naïve Bayes, all of which in turn makes the entire pro-
cess very efficient. The empirical testing on the collection of Web pages, drawn from

over ninety diverse, real life electronic goods retailers’ Web sites indicate that the
algorithm performs extremely well. The corpus of over one hundred documents can
be processed on a commodity hardware within a few minutes and delivers as much as
99% precision and 97% recall.

There are several interesting directions for future work. The first direction is to de-
velop a technique for filtering discovered patterns. The technique has to be capable of
identifying in some way and discarding patterns that lead to erroneous extractions.
The second is to implement some sort of validation of the extracted PVPs and map-
ping them to the common set of the product properties in order to create cohesive
collection of products per each domain. Finally, a property-value extraction system
can be assembled based on the prototype system developed during our research.

References

1. Arasu, A., & Garcia-Molina, H. (2003, June). Extracting structured data from Web pages,
The 2003 ACM SIGMOD International Conference on Management of data (pp. 337-348).

2. Chang, C.-H., Kayed, M., Girgis, M., & Shaalan, K. (2006). A Survey of Web Information
Extraction Systems. IEEE Transactions on Knowledge and Data Engineering, 18(10),
1411–1428. doi:10.1109/TKDE.2006.152

3. Chang, C.-H., & Lui, S.-C. (2001, April). IEPAD: information extraction based on pattern
discovery. In V. Y. Shen (Ed.), In Proceedings of the 10th International Conference on
World Wide Web (pp. 681–688). ACM.

4. Crescenzi, V., Mecca, G., & Merialdo, P. (2001, September). RoadRunner: Towards Auto-
matic Data Extraction from Large Web Sites. In Proceedings of the Twenty-seventh Interna-
tional Conference on Very Large Data Bases (pp. 109–118). Morgan Kaufmann.

5. Gusfield, D. (1997). Algorithms on strings, trees, and sequences: computer science and
computational biology. Cambridge University Press.

6. Kushmerick, N. (1997). Wrapper induction for information extraction (Doctoral disserta-
tion). University of Washington.

7. Kushmerick, N. (2000). Wrapper induction: Efficiency and expressiveness. Artificial Intelli-
gence, 118(1-2), 15–68. doi:10.1016/S0004-3702(99)00100-9

8. Morrison, D. R. (1968). PATRICIA - Practical Algorithm To Retrieve Information Coded in
Alphanumeric. Journal of the ACM, 15(4), 514–534. doi:10.1145/321479.321481

9. Tang, W., Hong, Y., Feng, Y.-H., Yao, J.-M., & Zhu, Q.-M. (2012). Simultaneous Product
Attribute Name and Value Extraction with Adaptively Learnt Templates. 2012 International
Conference on Computer Science and Service System, (pp. 2021–2025). IEEE.

10. Wang, R. C., & Cohen, W. W. (2009, August). Character-level analysis of semi-structured
documents for set expansion. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing: Volume 3 (pp. 1503-1512). ACM

11. Wang, Y., & Hu, J. (2002, May). A machine learning based approach for table detection on
the Web. 11th international conference on World Wide Web (pp. 242–250). ACM.

12. Wu, B., Cheng, X., Wang, Y., Guo, Y., & Song, L. (2009, September). Simultaneous Prod-
uct Attribute Name and Value Extraction from Web Pages. IEEE/WIC/ACM Joint Confer-
ence on Web Intelligence and Intelligent Agent Technology (pp. 295–298), 2009.

13. Zheng, X., Gu, Y., & Li, Y. (2012, April). Data extraction from Web pages based on struc-
tural-semantic entropy. In Proceedings of the 21st international conference companion on
World Wide Web (pp. 93–102). ACM.

