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Semi-Supervised Product Specification Extraction from 
Web Pages 

Abstract. This paper introduces an algorithm that utilizes the inductive semi-
supervised learning strategy – self-training model for extracting property-value 
pairs from a collection of Web pages. The algorithm employs a novel concept 
of short proper-ties and values for learning high confidence property-value pair 
seeds. The seeds are then used to discover repetitive HTML formatting patterns 
and consequently, using these patterns as the wrappers to extract the rest of the 
property-value pairs that the Web page contains. The experimentations on the 
collection of Web pages, drawn from over ninety diverse, real life electronic 
goods retailer Web sites shows promising results. The corpus of over one hun-
dred Web documents can be processed on a commodity hardware within a few 
minutes and deliver as much as 99% precision and 97% recall. 
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1 Introduction 

With billions of dollars already spent by digital shoppers each year and favorable 
forecasts of capturing even larger share of sales in the near future, online retail is one 
of the fastest growing industries. The boom in e-commerce in turn gave rise to online 
aggregators – search engines, comparison shopping sites, shopping portals, deal and 
auction sites that help users to sift through the retail debris. However, each online 
aggregator initially faces extremely challenging problem of building a cohesive prod-
uct catalog, which can be leveraged for smarter search and better customer experi-
ence. 

The information about the product that aggregators are interested in is very vola-
tile. It is frequently updated and typically generated dynamically on the fly when a 
user wants to see the product specifications. The specification Web pages, similar to 
one shown in Fig. 1, are crawled from the diverse e-commerce sites which vary in 
HTML formatting and optimized for human browsing rather than machine processing. 
There are several irregularities in the presentation of product property-value pairs 
(PVPs) on numerous retailers’ Web sites, such as layout formats that range from regu-
lar table, list to unstructured free text, usage of different product properties or differ-
ent names of the same properties or values (i.e., synonymous words or phrases having 
the same or similar meaning, abbreviations), different ordering of properties from site 
to site as well as omission of some PVPs or values even on the same site. Additional-
ly, the product detail pages, besides product specifications contain several other 
blocks of information. For example, as shown in Fig. 1, the leftmost block is a naviga-
tion bar that contains links for browsing the Web site inventory. There are also other 
tabs alongside the “Specifications” (highlighted with the red dashed box) that provide 



additional information about the product as well as customer reviews. Although these 
additional informational blocks can enhance consumer appeal, usability, and visual 
attractiveness, it brings great challenge for locating the PVPs on the page in order to 
automatically extract them. 

 

Fig. 1. A fragment of a product specification page. 

The key objective of our work was to develop an efficient algorithm capable of 
tackling the presentation irregularities and specification block identification challeng-
es and extracting the data of interest across different sites. We employ semi-
supervised machine learning and pattern mining techniques for discovering and ex-
tracting property-value pairs from product specification Web pages. In our self-
training machine learning model, we introduce the novel concept of short properties 
and values for learning high confidence PVP seeds. The seeds then used to discover 
the repetitive patterns of HTML formatting then using these patterns extract the rest 
of the property-value pairs that the Web page contains. 

2 Related Work 

The procedure for extracting content from a Web page based on the knowledge of 
its format is often referred to as "wrappers" and the process of information extraction 



(IE) is known as Wrapper Induction (WI). Formally, a wrapper is a function for ex-
tracting the relational content from a Web page while discarding the irrelevant text 
[7]. The main wrappers’ assumption is that repetitive patterns that occur in a Web 
page or multiple pages conform to a common template. The goal of WI is to automat-
ically generate a wrapper that is used to extract the targets for an information re-
source. 

In a supervised wrapper induction [6, 11], a set of extraction rules are learnt from a 
set of manually labeled pages then these rules are used to extract data items from 
similar pages. Because manually labelling pages is labor intensive, much effort has 
been devoted to automating the wrapper generation process [2]. Beginning with 
IEPAD [3], RoadRunner [4], and ExAlg [1], the tendency has been to build systems 
that employ semi-supervised or unsupervised ML techniques for either learning or 
identifying repetitive patterns in a Web page or across multiple pages. The works by 
Wu et al. [12], Zheng et al. [13], Tang et al. [9], and Wang & Cohen [10] conform to 
this trend. 

Tang et al. [9] proposed an unsupervised adaptive template based method to simul-
taneously extract name-value pairs (NVPs) from e-commerce sites. Tang et al. first 
construct the attribute word bag using Web titles from a single domain. The selection 
of candidate name-value pairs is based on their organization in DOM tree: adjacent 
text nodes or the same text node but separated in some way (e.g. ":”). The bag of 
words is then used to learn high-quality page templates by selecting most frequent 
patterns across multiple pages. In the next step, attribute-value pairs are extracted 
from the page by matching each of these templates. Many ideas from Tang et al. re-
search, such as the domain-specific word bag, page preprocessing, noise filtering are 
adopted in our work. 

Zheng et al. [13] introduced an analogous system but utilizing a template-
independent method. The system uses short listing of products to find the link to the 
offer then retrieves and extracts data from “data-intensive page" – a page that contains 
detailed product information. It also relies on a set of manually collected attribute 
name synonyms for a given domain and relies on the assumption that attributes occu-
py a contiguous region in a “data-intensive” page. Thus, the main goal of their ap-
proach has been to identify the "data-rich region" boundaries of a specific product. 
These regions are identified by calculating and comparing structural-semantic entropy 
of the nodes in a DOM tree. For the experiments reported in [13] authors used an 
open source HTML parser to clean up the bad HTML tags and automatically close 
elements with optional end tags. Similar functionality to "fix up" many common mis-
takes in HTML documents has been implemented in our work. 

Wu et al. [12] also proposed template-independent method, which uses few manu-
ally labeled pages for a domain. The labeled pages are combined with unlabeled ones 
to boost the learning of candidate attributes using a co-training algorithm with Naïve 
Bayesian classifier. The candidates are used to identify product specification block on 
the page. Wu et al. [12] based their method on the hypothesis that the attribute name 
and value presented together (i.e., they are contiguous and aligned horizontally or 
vertically) on the "product details" page. Our algorithm bears some similarity to this 



work. We also used analogous hypothesis about property and value alignment on the 
page and semi-supervised ML approach for learning the PVP seeds. 

The Set Expander for Any Language (SEAL) system developed by Wang & Cohen 
[10] expands a partial set of “seed” objects into a more complete set by constructing 
page-specific extraction rules (character-level wrappers) that are independent of the 
human language and markup language of the Web pages. The system can expand sets 
of category instances as well as binary relation instances. SEAL extracts named enti-
ties with wrappers, each of which is composed of a pair of character-level prefix and 
suffix. The algorithm finds maximally long contextual strings that bracket at least one 
seed instance of every seed using PATRICIA tries (Practical Algorithm to Retrieve 
Information Coded in Alphanumeric [5, 8]). Wang & Cohen described in detail an 
algorithm for constructing document-specific wrappers automatically and experimen-
tally illustrated that character-based wrappers are better suited than HTML-based 
wrappers for the task of set expansion. Although the main focus of  Wang & Cohen  
was on developing algorithm for named entity extraction, they also presented a meth-
od, which utilizes an additional middle context, for constructing wrappers for binary 
relation instances (i.e., “Ford”\“USA”, “Nissan”\“Japan”). The method is language-
independent and can be applied to property-value extraction from semi-structured 
documents. Our work is inspired by the SEAL experimental results. The algorithm for 
constructing wrappers described in [10] is a pivotal point of our research. 

3 Proposed Technique 

In order to discover patterns and extract PVPs from product specification Web 
pages, we propose a semi-supervised template-independent method. As illustrated in 
Fig. 2, the method contains four main tasks: preprocessing, seed learning, pattern 
discovery, and pattern-based extraction.  

The automated discovery of patterns and extraction of the property-value pairs for 
each product domain is preceded by the initial semi-automated assembling of domain 
dictionary (aka training set, aka classifier features set) of short properties and values. 
The semi-automated process is shown in the dashed box in Fig. 2 on the left of the 
main process. The process uses a small subset of preprocessed product specification 
pages from a specific domain (e.g., 10 pages) and user-provided seeds to automatical-
ly discover patterns and extract property-value pairs.  The extracted short property-
value pairs during this stage serve as the initial training set for the semi-supervised 
machine learning algorithm of the main process. The following subsections present 
the details of the four steps of the proposed technique. 

3.1 Preprocessing 

To reduce the amount of characters that need to be processed by character-level 
pattern discovery algorithm, the input HTML document is parsed chunk-by-chunk and 
converted to a clean source document.  The chunks are the open tags, closed tags, and 
the text between the tags, which are referred to as the text chunks in this paper. A text 



chunk may contain irrelevant text (i.e., neither property nor value, nor PVP) or either 
property or value, or PVP.   

 

 
Fig. 2. Semi-supervised property-value pairs extraction algorithm 

According to the relative position of a property and value, the existing method as-
sumes that a Web page may meet two conditions: 

─ the product property name and value, which constitute a PVP, organized in differ-
ent but adjacent text chunks (e.g., <tr><td>Camera resolution</td><td>3.5 mega-
pixels</td></tr>); 

─ the product property name and value belong to the same text chunk and separated 
by the colon symbol “:” (e.g., <li>Camera resolution: 3.5 megapixels</li>)1. 

During the conversion process, any tags that are on the tag exclusion list (i.e., the 
tags that certainly do not surround PVPs such as, header, script, etc.) and text chunks 
between these opening and closing tags are skipped and those that are not, saved to a 
new document. Before saving the tags and the text chunk to a new document, first, the 
new line symbols, tabs, and extra white spaces are removed. Next, for the tags with 
attributes, the unique (i.e., id and name) attribute values are removed and the rest of 

                                                             
1  A detailed analysis of a vast number of the products’ specification Web pages revealed that 

the colon symbol “:” is the most common property and value separator. 



the attributes are stripped of all the symbols, white spaces, and numbers (e.g., <th 
scopecolclassspecvaluecol>). The text chunks are checked for “:” separator and only 
the first “:” in the chunk is retained if there are more than one separator in the text 
chunk. Additionally, we automatically close <tb>, <th>, and <li> tags if they do not 
have corresponding closing tags.  

3.2 Seed Learning 

Our ML approach to seed learning employs an inductive semi-supervised learning 
strategy – self-training model and is based on the observation that there is a limited 
number of common to any product domain as well as specific to each product do-
main short property-value pairs (e.g., Weight: 1 kg, Display Resolution: 1024 × 768). 
These short PVPs are extracted from the training set of the Web pages and used for 
building classifier’s feature set. Because of the limited number of common short 
PVPs and very little variety of their unique spelling, no typical NLP preprocessing 
required (i.e., POS tags, stemming, etc.); the classifier does not need a large training 
set, and the number of features does not grow endlessly during semi-supervised learn-
ing. 

Another key parts of this approach are the two following assumptions: (1) a prop-
erty always comes before a value, and (2) there must be a pattern(s) in PVPs format-
ting. If there is a pattern(s) then only a small number of PVPs are required to discover 
it (i.e., as few as 2). Therefore, only those learned PVPs that the classifier is the most 
certain of are selected (i.e., learned PVPs with the highest scores). After classification 
is done, the text chunk classified as property is selected as a part of PVP seed only if 
it is directly followed by the text chunk classified as value. The learned PVPs are then 
used as the seeds for pattern discovery.  Using the discovered pattern, new PVPs are 
extracted, added to the training set and then used in subsequent classification task.  

During the seed-learning task, the system uses the dictionary of short property and 
values which are semi-automatically assembled once for each product domain and 
used as the training set for classifier in order to learn new short properties and values 
on the test page. The dictionaries are the property and value Bag-of-Words (BOW) 
and n-grams (NGRAM) of properties and values. The BOW dictionary contains 
words found in short properties and values disregarding word order. The NGRAM 
dictionary (i.e., bigram, trigram,… n-gram where n is the number of tokens) contains 
entries of a property or value text string with removed white spaces between the 
words (e.g., CAMERARESOLUTION); thus preserving the word order. As the eval-
uation of our algorithm indicate, the BOW results in higher recall and the NGRAM in 
higher precision.  Therefore, both of them are used in the following fashion: first we 
attempt to find seeds using NGRAM approach, then, if we do not succeed (i.e., num-
ber of found seeds is less than two) and only then, we use the BOW approach.  

3.3 Pattern Discovery 

To discover patterns, we first find all instances of the provided seed within the 
document of interest.  The instances are grouped by the context that separates proper-



ties and values.  The middle context as well as three-character long left and three-
character long right context is maintained with each instance. 

Next, we then filter out the seed instances that do not have at least one counter-part 
with the same left, mid, and right context. After filtering the instances, the PVPs are 
joint together using mid context (e.g., Color</td><td>Black) then for each joint string 
we extract and insert into two PATRICIA tries left character string (starting from the 
first character of the document) and right character string (ending at the last character 
of the document) which is inserted in reversed character order. The tries maintain a 
list of ids for every node in order to keep track of the seed instances that follow the 
string associated with that node. 

Finally, the algorithm proposed in [10] for constructing unary wrappers is exploit-
ed to find maximally long contextual strings that bracket at least one seed instance of 
every seed. The patterns are assembled for PVP extractions using the found left and 
right contextual strings and the middle context of the group of seeds. 

3.4 Pattern-based Extraction 

First, the patterns assembled using the longest character-level prefixes and suffixes 
found in Step 3 are normalized by removing all the incomplete tags (i.e., /td>), tags 
that have no matching opening or closing counterparts, and tags that surround other 
tags, such as table, table row tags which surround table cell tags (i.e., < table>, 
<thead>, <tbody>, <tr>), and list tags (i.e., <ul>, <ol>, <dl>). 

Then, the normalized patterns are considered as regular expressions (RegEx) (e.g., 
<tr><td>(.*?)</td><td>(.*?)</td></tr>) and used for extraction of PVPs. The RegEx 
is applied to the document of interest in both directions: left-to-right and right-to-left 
then the two groups of regular expression matches are used to assemble property-
value pairs. The reason for two-directional application is that in some cases, specifi-
cally with patterns based on <span>, <p>, or <div> HTML blocks, the first property 
or the last value of extracted PVPs may include extra markup and text. When left-to-
right and right-to-left extracted PVPs do not match exactly, the system validates inner 
HTML of non-matching items and selects the shorter strings that do not contain any 
markup or longer strings only if they have valid HTML. 

When all the PVPs are extracted, the short PVPs (i.e., three-token property and 
three-token value) are added to the dictionaries and their counts of occurrences are 
increased. These PVPs are used in the training set for the subsequent classification. 
Finally, the discovered patterns and extracted PVPs are saved to the database. 

4 Evaluation 

4.1 Document Corpus and Experimental Design 

The evaluation of the proposed approach was performed using a corpus of 108 
product specification Web documents (similar to one shown in Fig. 1), and the stand-
ard IE performance measures of precision, recall, and F1 score were measured. The 
corpus used in the experiments contained documents from two electronic goods’ do-



mains – Digital Cameras (56 documents) and Smartphones (52 documents). In order 
to have unbiased evaluation results, the corpus was collected from 92 distinct elec-
tronic goods retailers’ Web sites.  

The entire corpus was semi-automatically processed, that is PVPs were extracted 
from each document using few (i.e., two to five) seeds identified on the page and the 
implemented pattern discovery algorithm, then manually examined, edited and to-
gether with missed PVPs (i.e., not extracted by algorithm for some reasons) combined 
into page item set – a set of actual PVPs that the document contains. The page items 
of each document were saved to the database and served as the ground truth test data 
set in order to benchmark our proposed algorithm. Ten documents from each product 
domain and their page items also served as the seeds for performing semi-supervised 
learning. 

The algorithm evaluation experiments were performed for two types of PVP ex-
tractions: (1) utilizing known seeds (i.e., user provided seeds), in order to assess effec-
tiveness of the pattern discovery functionality, and (2) utilizing learned seeds, in order 
to identify best suitable ML classifier and corpus processing strategy. 

4.2 Pattern Discovery Evaluation 

To evaluate the effectiveness of the developed PVPs pattern discovery, the extrac-
tion accuracy using known seeds were compared with the manually annotated, ex-
pected extractions of the corpus (i.e., page items). To infer the unbiased performance 
of the algorithm, the precision, recall, and F1 scores were calculated for exact match-
es (i.e., actual PVP matched expected PVP word-for-word) and for partial matches 
(i.e., actual PVP was close enough to expected PVP but contained some additional, 
irrelevant words or had some words missing). The partial matches occurred in the 
documents that had very uncommon, unique PVP formatting (e.g., 
<p><b>(.*?)<br></b>(.*?)</p>). 

Table 1. Results of the pattern discovery algorithm performance utilizing known seeds 

 Expected Actual TP FP FN Precision Recall F1 

Exact  4848 4841 4790 51 60 99.34% 98.90% 99.11% 

Partial 4848 4841 4827 15 22 99.77% 99.37% 99.55% 

TP – true positive, FP – false positive, FN – false negative. 
  The first two columns in the Table 1 display total number of all corpus PVPs that 
were expected and actually extracted respectively.  In the first row of the table the 
partial match extractions were counted as both – False Positive and False Negative 
extractions; in the second, they were counted as True Positive extractions. As the test 
results indicate, the implemented pattern discovery algorithm is a great tool for learn-
ing formatting patterns in HTML documents, which delivers impressive performance 
with precision and recall being around 99%. 



4.3 Machine Learning Approach Evaluation 

The main goal of ML experiments was to achieve similar recall, precision, and F1 
score to the ones attained in the pattern discovery evaluation – close to 99%. To find 
the best suited classifier for the task, three different text classifiers were integrated 
into the in-house application and extensively tested.  

Classifiers 
Microsoft Infer.NET sparse Bayes Point Machine (BPM). For BPM classifier, the 

initial domain dictionary of short properties and values words (tokens) serves as the 
set of features and the documents that the dictionary is built on – as the training da-ta. 
The test data is represented by a vector whose dimensions are equal to the number of 
features. The BPM uses Bernoulli model of features (i.e., binary occurrence infor-
mation) ignoring the number of occurrences. The train\test text string is represented as 
one raw string similar to the following comma separated values: 
1,0,0,0,1,0,0,0,0,0,0,0,0,…,  where the numbers mark the presence of a word (i.e., 
feature) in the train\test text string. The position within the string indicates ordinal 
position of the feature in the dictionary. This dense data is made sparse by ignoring 0s 
and is fed to the sparse BPM. 

Support Vector Machine (SVM) – the .NET conversion of LIBSVM from Matthew 
Johnson. The SVM classifier uses the same set of features as BPM. The SVM takes 
into consideration the number of occurrence of a feature in the training set. The tested 
text string is represented similar to the following csv: 1:3,32:1,56:45, where the first 
number is the ordinal of the feature and second is the number of occurrence of the 
word in the training set. 

Naïve Bayes (NB) – a custom implementation of a simple Naïve Bayes multiclass 
classifier is used. The classifier matches provided test set with available training set. It 
calculates the score (i.e., prior probability) of every individual token then performs 
the sorting operation on the probabilities. If the probability of multiple items is the 
same, this implies that it is an undetermined category; in other words, the classifier 
cannot decide which category it belongs to because of a lack of information. 

Results 
In order to determine the best classifier for the task, we compared the performance 

of BOW and NGRAM feature type for each classifier. The BOTH type works in the 
following fashion: first the system attempts to find seeds using NGRAM approach, 
then, if it does not succeed (i.e., number of found seeds is less than 2) and only then, it 
uses BOW approach. The chart in Fig. 3 shows that the BOW results in higher recall 
and NGRAM in higher precession, and all classifiers deliver identical results with 
BOTH feature type setting. The BOTH approach smoothens the difference between 
BOW and NGRAM precision and recall and delivers highest F1 score – 95.61%. 
Therefore, since all classifiers with BOTH settings deliver identical precision and re-
call, the only performance indicator that discriminates them is the task execution time: 
around 8 min for BPM, 7 min for SVM, and 2 min for NB on commodity hardware. 



Thus, NB classifier was selected as the best suited classifier for the task because it 
takes the least amount of time to process a corpus of over one hundred documents. 

 

 
Fig. 3. Feature type evaluation results. 

After the classifier was selected we conducted an experiment to determine the cor-
pus processing strategy that will deliver highest precision, recall, and F1. We com-
pared four different strategies with each other as well as with corpus processing re-
sults utilizing known seeds. The four strategies as follows: 

1. One iteration NB BOTH plus an extra iteration with BOW features and increased 
token limit. The NB BOTH processing was enhanced with an extra iteration in 
which the failed documents (i.e., documents that did not produce any extractions) 
were processed with BOW features and increased by two token limit. The token 
limit is the maximum number of words of property and value in short PVP that the 
system uses as the training data. The purpose of increasing the token limit is to 
successfully process the Web documents that might not have enough 3 token PVPs 
(default) for discovering patterns (i.e. less than two short PVPs per page). 

2. One iteration NB BOTH with 20 training set pages plus an extra iteration with 
BOW features and increased token limit. The same arrangements as in the previous 
strategy was used but the training set consisted of 20 corpus documents that con-
tained the maximum number of PVPs. The aim was to test if doubling the training 
data will have positive effect on the processing results. 

3. Two iteration NB BOTH plus an extra iteration with BOW features and increased 
token limit. The first iteration was performed with the default settings. In the se-
cond iteration, all documents were processed using features collected during the 
first iteration and only the features that do not already exist in the dictionary of 
short properties and values were added to the list.  

4. Three NB NGRAM iterations plus an extra iteration with BOW features and in-
creased token limit. The aim of this strategy was to test if using primarily NGRAM 
features would reduce the number of erroneous extractions.  The second and extra 



iterations were similar to the ones used in the previous strategies. In the third itera-
tion though, only the failed pages were processed using BOW features and no fea-
tures were added in this iteration to the dictionary of short properties and values. 

 

 
Fig. 4. Corpus processing strategies evaluation. 

The chart in Fig. 5 illustrates that the two iterations with BOTH features and an ex-
tra iteration with BOW features and increased token limit to process documents that 
might not have enough 3-token properties and values delivers the best results. The 
impressive 98.25% F1 score is very close to the one achieved after processing the 
corpus utilizing known seeds. Although these results are generalizable to the extent 
that the two specific domain areas that we have worked with are generalizable, we 
believe that the proposed technique can easily be extended to include other product 
domains. However, greater variety of domains needs to be used in order to get more 
conclusive result. 

5 Conclusions 

In this paper, we proposed an algorithm, for extracting property-value pairs from a 
collection of Web pages. The algorithm employs inductive semi-supervised learning 
strategy – self-training model and a novel concept of short properties and values for 
learning high confidence property-value pair seeds. The seeds are used to discover 
repetitive HTML formatting patterns and consequently, using these patterns as the 
wrappers, we extract the rest of the property-value pairs that the Web page contains. 
The key feature of this approach is the focus on semi-supervised learning of a limited 
number of short property-value pairs per product domain, which normally do not vary 
in spelling. It greatly reduces the annotation effort and amount of data (i.e., Web page 
content) that needs to be processed, streamlines the ML task because no typical NLP 
preprocessing is required (i.e., POS tagging, stemming, etc.), and allows usage of 
simplistic classifiers such as Naïve Bayes, all of which in turn makes the entire pro-
cess very efficient. The empirical testing on the collection of Web pages, drawn from 



over ninety diverse, real life electronic goods retailers’ Web sites indicate that the 
algorithm performs extremely well.  The corpus of over one hundred documents can 
be processed on a commodity hardware within a few minutes and delivers as much as 
99% precision and 97% recall.  

There are several interesting directions for future work. The first direction is to de-
velop a technique for filtering discovered patterns. The technique has to be capable of 
identifying in some way and discarding patterns that lead to erroneous extractions. 
The second is to implement some sort of validation of the extracted PVPs and map-
ping them to the common set of the product properties in order to create cohesive 
collection of products per each domain. Finally, a property-value extraction system 
can be assembled based on the prototype system developed during our research.  
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