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Abstract. Recent work in the field of security for the generation of
patrol schedules has provided many solutions to real-world situations
by using Stackelberg models and solving them with linear programming
software. More specifically, some approaches have addressed the diffi-
culties of defining patrol schedules for moving targets such as ferries to
minimize their vulnerabilities to terrorist threats. However, one impor-
tant aspect of these types of problems that hasn’t been explored yet
concerns the concept of time-windows. In this work, we show the rele-
vance of considering time-windows when generating solutions such as to
attend to a broader class of problems and generate sound solutions. We
propose some improvements to the model for the generation of patrol
schedules for attacks on mobile targets with adjustable time durations
while keeping the constraints linear to take advantage of linear program-
ming solvers. To address the scalability issues raised by this new model,
we propose a general column-generation approach composed of a mas-
ter and slave problem, which can also be used on the original problem
of patrol generation without time-windows. Finally, we discuss and pro-
pose a new two-phase equilibrium refinement approach to improve the
robustness of the solutions found.

1 Introduction

In the last few years, there has been a growing interest in the field of security to
improve and automate some of the complex tasks which would normally need to
be done by a field expert. The tasks we are referring to relate to the definition
of optimal patrol schedules to protect specific locations or targets. Traditionally,
these tasks have been done by hand using expert knowledge of the problem to
find the optimal schedule which would minimize the chances for a hostile agent
to successfully perform an attack or other form of single action.

Without specific metrics to objectively quantify the quality of the schedules
generated, a great risk is always present that a small window of vulnerability
may have been overlooked, leaving some targets exposed to potential attacks.

A natural approach to solve these types of problems is to model them using
game theory. The problem is formulated in such a way that the goal is to find
an optimal set of schedules that minimize the probability of success for hos-
tile agents. More specifically, Stackelberg models allow for a representation of
this class of problems such that they can often be solved using standard linear



programming software very efficiently. Various flavors of security problems have
been explored in [1], [2], [3], [4] where aspects such as the number of patrollers
present, the topology of the graphs or the type of actions of potential attackers.
Many real-life examples can be also be found in [5] describing how many of these
challenges have been confronted.

The specific problem addressed in this article relates to the problem of moving
targets, previously studied in [6], for which a linear program model was proposed
with discretized values for time and distances to generate the patrol schedules.
The solution provided was very clever but had some scalability issues for larger
problems (as studied for the discrete case in [7]).

In this work, we provide a scalable model for the continuous version of this
problem. Our contribution consists in adding the notion of a minimal time win-
dow required by the attacker to successfully complete an attack. In order to do
so, we work on a full representation of the problem rather than a compact one.
This different representation allows for a column generation approach to be used
where a master problem will work on a subset of all the paths possible in the
problem, and a slave problem will generate new paths for the master problem
by solving a shortest path problem.

We then propose a two-phase equilibrium refinement approach where some of
the constraints of the problems are relaxed in a second phase of the algorithm to
minimize the utilities subject to a fixed bound. Finally we present some results
showing a great improvement for the utility values for the refinement approach.

2 Domain definition

For the aforementioned application, a schedule is defined as a piecewise linear
function normalized between 0 and 1 (i.e., a ferry travelling between point A and
point B). F, : ¢ = 1..Q is a set of @ mobile targets with corresponding schedules.
The utility gained by an attacker is also defined as a piecewise linear function
with a value between 0 and 10. The time is discretized in M points, or M — 1
intervals and the distance is discretized in N points (also N — 1 intervals), both
normalized between 0 and 1. A compact representation of the transition graph
is used in the first model, which helps to reduce the number of variables needed
to represent the problem in this formulation. Instead of associating probabilities
to a list of a full trajectories, probabilities will be associated to each f(,j, k)
where a patrol goes from node i to node j at time-step k (see Figure 1). To keep
the graph consistent, and set a starting point for the initial generation of the
trajectories, some constraints on the probabilities are added as p(¢, k). p(i, k) is
the probability that a patrol is at node ¢ at time-step k. From these probabilities,
a full trajectory can be extracted as a Markov strategy when needed.
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Fig. 1. Discretized transition graph in compact representation.

3 Minimum Time-windows

The problem of patrol schedule assignment to protect moving targets travelling
in a straight line between two points can be resumed to an assignment of position
and time to a patrol, in regards to maximum speed constraints.

The ideal formulation of the problem would take into account the continuous
aspects of the patrols’ trajectories in time. However, such a formulation is not
possible given the complexity it would entail to find a solution which generates
continuous trajectories maintaining a Stackelberg equilibrium.

An easier and faster way is to approach this problem through a linear pro-
gramming model to take advantage of the many very efficient and fast existing
solvers. The solution proposed in [6] was to discretize the time and distance vari-
ables to reduce the problem to a linear one. What we propose in this article is
related to that model but with the added complexity of minimum time-windows
for attacks to occur.

Using a model without time-windows as done in [6] can be very efficient but
lacks credibility for some applications. It is not unrealistic to expect an attack
on a moving target to occur with a certain duration. The hypothesis we make
for this work is that an attacker’s utility will be greatly decreased if a patrol
covers the target at least once during this interval, diminishing chances of a
successful attack. Figure 2 shows the utilities for an example scenario where
patrol schedules were generated for 2 patrols and 3 targets over a 30 minutes
time-span (normalized between 0 and 1). The black line shows the utility as
computed for each time-steps and intersections. It is possible to see that some
spikes in the utility only occur at a very small time-interval. More precisely, the
utility at time 0.26 is equal to 3.57. However, this spike has a very short duration,
and if we were to suppose that an attack has a minimum time-window of the size



of one time-step, the real utility value would be reduced to 1.6, which is showed
by the yellow curve in the graph. The yellow curve was generated by iteratively
going through all time-steps and intersections, and taking the minimum value
of the utility for the size of the time-window (1/16).
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Fig. 2. Shows in green the reduced attacker’s utility when taking into account a time

window of width % as compared to the pointwize utility in black

Although we could intuitively use such a heuristic (taking the max of the
values computed over an interval) to compute the utility in regards to a time-
window for a solution generated using the previous model, the resulting values
will not be accurate if the values from a compact representation are used for
reasons detailed in the next section.

3.1 Model

To properly take into account minimum time-windows for the attacker utility
the following model needs to be solved:

min z
f(,5,k),p(i,k)

fi g, k) €10,1] Vi, j, k (2)
fi, 5, k) =0V, g,k : |dj — di| > vt (3)
N
plisk) = f(G,ik—1) Vi k> 1 (4)
j=1
’ N
pi k) = f(i 4, k) Vi k < M (5)
j=1

Z p(i k) =1 vk (6)

z > AUtEU (Fy,t) Vg t:(t+ o) <ty (7)



The constraints (2),(4),(5),(6) are defined such as to keep graph consistency.
More precisely, to insure that probabilities inherent to a patrol’s schedule remains
possible such that there are as many patrols that enter a node as there are that
leave it. Constraint (3) insures that a ship’s maximum speed is taken into account
when verifying which nodes can be reached in-between two time intervals. For
future reference, we define the graph related constraints as

G={f(i,4,k),p(i, k) : (2),(3),(4),(5),(6) are satisfied} (8)

The utility of an attacker, defined as AttEU() and used on line (7), is where
lies the main difficulty for representing this problem. It is dependent on the
utility specified for the problem as a piecewise linear function, on a probability
of successful detection of attacker by the patrol, and more importantly, on the
probability that a patrol’s planned trajectory will intersect at least once with the
target it is protecting. The computation of this utility relies on the hypothesis
that we can directly extract the chances of a successful attack from the current
graph representation. However, using a compact graph representation, crucial
information is lost in regards to the probabilities of a successful attack over a
time-window.

3.2 Probability of a Successful Attack

One of the difficulties in implementing a minimum time-window for potential
attacks relates to the computation of the probabilities of success of the attack.
Using a compact model with discretized time-steps as previously described has
the advantage of significantly reducing the number of variables necessary to rep-
resent the problem from O(N™) to O(MN?). The problem with this represen-
tation, however, is that for attacks with time windows some of the information
necessary to compute the probabilities of an attack being detected is lost.

To evaluate the probabilities of an attacker being detected in a time-window,
it becomes necessary to evaluate the full trajectory of patrols in this time win-
dow. This can be seen in Figure 3 where in a model without time-windows and
compact representation, probabilities are associated to edges F1. g time-steps tg
and intersections . In this figure, to compute the probability that a patroller
will cross in the window of attack, a naive and wrong approach would be to add
the probabilities of all edges E crossing with the attack window. Doing so will re-
sult in possibly overestimating the probabilities. In the example (Figure 3), four
trajectories may be followed by a patroller. Ei-Fg, Fo-FE4, Fo-E5 and E3-FEs.
If all intersections are added together, then one would add the probabilities of
taking edges E9, E5, Fg, even though a patrol taking the path E»-E5 should only
count once. The correct way of computing the probability that a patrol crosses
at least once with the attack-window corresponds to E1 x Fg + Fo x E5 + E3* Fs,
which introduces a nonlinear expression to the problem in the compact form.

One way of representing the probability of detection of an attack for a time-
window combined with the utility gained by the attacker is to use a full repre-
sentation in the following way:
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Fig.3. L1 and Ls represent the distance from which the target Fi is considered as
covered by the patrol. F ¢ is the compact representation of trajectories to be followed
by the patrols. The darkened area shows a minimum attack time-window (of size ay,).

min =z
s.t.
A, =1
p%:P ! (9)
22> (1= 3 I xX,) x U(t) Vg, t
pEP
Ap >0

where P is the set of all possible paths in the graph and A, is the variable
associated with the probability of following path p. Using the same trick as in
[6] to take into account the continuity of the problem, Igt is a vector indicating
whether path p intersects at least once with ferry ¢ between ¢ and t + ay,.

U(t) is the utility gained by the attacker on average between time ¢ and
time t 4 . It is assumed that t € T is the set of all time steps as well as
time-intersections shown as 6 in Figure 3.

3.3 Column Generation for Mobile Targets

To solve the optimization model with paths instead of arcs, it becomes necessary
to find a way to work on a subset of paths rather than all of them, since the
problem becomes too large as stated earlier.

A classic approach in linear programming is to use column generation to
work around this problem.



Rewriting the problem without time-windows as a list of arcs z;; € A, and
adding a source (0) and target (M+1) node to get rid of the constraints p(s, k)
we get:

mingy 2
7:(0,5)€A
Tinvy1 = 1
§:(i,M+1)€A . . (10)
Z Tij — Z ‘Tjizo i>1, i< M+1
j:(1,7)€A j:(4,8)€EA

z+ E:Iffxv:j «U(q, 1)) 2 U(g, 1) Vg, t
ij
Tij S [0, 1] Vi,j

where [ ff is a pre-calculated vector for all patrols intersecting with Fj, at time ¢
equal to 1 (0 otherwise).

1 1

I1 1 12,2 T1,1,1 Z1,1,3
qgxt 1]
qt —
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P

ij

We can replace the x;; by >_ . p 2ijpAp Where the constant z;;, € {0,1} repre-
sents path p and A, the flow associated with this path, and divide the problem
in a master and slave problem. The master problem will work on a subset of
paths Ps; € P, while the slave problem will generate new paths to be added to
the master problem.

We get the problem:

min z
s.t.
A =1
. pg;g : (11)
—z— Zlfj > zijpAp * U(g,t)) < —-U(q,t) Vg,t

ij pEP
Ap >0



The reduced cost can be computed in relation to the earlier representation,
which we will call the Master Problem (MP):

min, =z
s.t.
Ay =1 Y
P SRGE)
2+ > O Ifjta:ijp) * Ny > Iff Vg, t M
peEP ij iJ
Ap >0 Vp

Taking mp and 71 as the dual variables, the reduced cost of one column (path)
can be computed as:

cp=1-— (1+Zli‘1j-txij) xm +m9 Vg,t
ij

The column-generation sub-problem, which we will define as Slave Problem
(SP), will be to find a path which minimizes the reduced cost:

. t
min 1 —7my + 3 I« m +mo

x5 7
s.t. Z Tij = 1
7:(0,4)€A
Z TiM+1 = 1 (13)
ji(i,M+1)€A
Tij — Z xji:() i>1,i< M+1
j:(i,5)€A j:(j,i) €A
vy €[0,1] Vi, j

One issue of this model concerns the computation of the full matrix I for
all possible intersections. It is impossible to only generate the intersections for
the relevant paths in the master problem since when generating new columns
(paths) to add in the slave problems, the reduced cost has to take into account
the constraints in the master problem. In the case of a single resource, this
means there will be as many constraints as there are variables. However when
more resources are available, the number of variables will expand exponentially,
making this approach much more interesting in terms of scalability.

4 Equilibrium refinement

The notion of equilibrium refinement is not a new one and has been explored
in articles such as [6], [8] and [9]. For a problem similar to the one presented
here, the approach proposed generates solutions under the assumption that a
defender will want to minimize his maximum potential lost (attacker utility) at
any single point in time.



Operating under such an assumption is logical for this security problem since
the attacker has no reason to attack a target for which his gain (utility) will be
lower than if he attacks at another time.

However, as was pointed out by [6], this may leave other points of attack
needlessly vulnerable if the attacker doesn’t attack to the critical point (we
consider a critical point as a maximum value which cannot be further decreased).
This weakness in the model becomes most obvious when using a LP solver based
on the simplex method. The solutions which are generated by this method will
normally be on extreme points, which will often mean most of the utilities at all
time steps will be at the maximum value.

If we relax slightly the initial hypothesis on the rationality of the attacker, the
problem may now shift significantly and have an important impact on the results.
If, for example, the attacker doesn’t possess all of the information concerning
the schedules of the patrols, or is unable to recreate the model used in this
paper to generate the probabilities associated with each patrol, he may decide
to attack at a sub-optimal point in time. There is no reason why we shouldn’t
take advantage of this.

The problem can be seen as a desire to minimize the time as well as the
utility to be gained for performing an attack, or more precisely, the integral of
the function defining the attacker’s utility.

Obviously, the approach we propose here is just one of many possible tools
which should allow an expert to better select a solution approach, and its value
should be defined in regards to the type of problem to be resolved.

We define a critical time-step c¢; as a point in time for which the utility of the
attacker will be the highest, given a selection of discretized time and distance
points. In the following model, these critical time-steps will be a subset of the
intersections of the position of the patrols in time with the targets they are
covering. Recall the definition of the graph constraints (8).

Phase 1:
min z (14)
f(i.3,k).p(3,k)
f(i,5,k),p(i, k) € G (15)
z > AUEU (Fy, ty) Vg, k (16)
Phase 2:

P
17
i 2 1

=1
fi g k), p(i, ) cG (18)
v; > dy x AttEU (Fy, tx) Vg, ki (19)
v, <z Vi (20)

In Phasel, a solution will be generated for the initial problem to compute
the solution to the Stackelberg model. Once this solution is available, another
model will be solved in a second phase where the objective function will now



be modified to be the summation of the values at each critical time-points,
rather than the max as was done in phase 1. By setting an upper bound on
the values of each critical time-point, we insure that the solution stays valid as
a Strong Stackelberg Equilibrium, but we also improve the other time-points
where possible attacks could occur, in the case of a sub-optimal choice by the
attacker.

Figure 4 shows the trajectories of three ferries, for which two patrols are to
be assigned to protect. Using similar parameters as in [6], we can see in Figure
5 an initial patrol schedule generated for the problem. It is possible to see that
the patrols sometime actually take an arc that doesn’t protect any of the ferries
while a better choice would be possible. This sort of behavior is a result of
doing a min-max approach. On Figure 6 we can see a net improvement over
the trajectories that are generated, meaning that less unnecessary moves will
be done by the patrol when they could be monitoring a ferry. Figures 7 and 8
show the utilities which have been computed at each phase, and we can see the
difference between those two sets of utilities in Figure 9. It is obvious from this
last figure that the approach we propose has a great impact on the improvement
of the final solution for the patrol schedules since only at one point does the
value slightly worsens (but is still bounded by the maximum utility computed
in the first phase).
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Fig. 4. Ferry trajectories with vulnerability corridors.
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5 Conclusion

We proposed a model to take into account the minimal duration of an attack.
This increases the realism but generate much larger linear programs for which
scalability issues are unavoidable.

We believe that the column generation approach presented in this article will
be of great use to tackle problems where it is necessary to take into account time-
windows. The way the column generation approach is implemented will obviously
have a great impact on the final result, and it allows for a great flexibility between
solution quality and memory/cpu usage. Many refinement can also be done to
the model, possibly for the generation of the paths for the slave problem, by using
heuristics such as to generate promising trajectories first and possibly converge
more rapidly to a solution.

Equilibrium refinement is an heuristic mean to reduce the time windows of
high vulnerability. Our two phases approach yields very good improvements.
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