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Abstract. Computing relatedness between terms in a given corpus is
a key component of many tasks in data mining problems. Methods to
automatically compute relatedness make use of the premise that co-
occurrence in the same context and frequent appearances in multiple sim-
ilar contexts is an indicator of similarity. We propose Cross-Context Sim-
ilarity (CCS) that utilizes similarity among contexts (cross-occurrence)
along with co-occurrence, and present a mathematical study of the rela-
tionship between corpus parameters and the computed similarity. Specif-
ically, for a case where the dataset is a parallel text, we prove that our
method favors large corpus size, large vocabulary, and small context size,
for distinguishing related from unrelated words.

Keywords: text similarity, cross-lingual information retrieval, dictio-
nary construction, evolving bipartite graphs

1 Introduction

A measure of relatedness between concepts is a key component of many tasks
such as Information Search and Retrieval, Classification and Clustering. These
measures are typically based on a notion of ‘context’, which may vary depending
on the application. In particular, sentence context is central to tasks such as word
sense disambiguation [13,7]. Several approaches to compute similarity using only
the word distribution in a context have been proposed [12,8]. Explicit Seman-
tic Analysis [4] and Temporal Semantic Analysis [14], that use Wikipedia and
New York Times corpus respectively, have been shown to correlate well with hu-
man judgment. “Cross-domain similarity mining” has also been explored where
the problem of schema and ontology matching [2], including cross-lingual ontol-
ogy matching [15] is studied. An important application of cross-lingual ontology
matching is cross-lingual information retrieval (CL-IR), which relies on an im-
plicit or explicit relatedness among the words of different languages. This makes
it useful in building a dictionary of multi-lingual word association [16,11].

In addition to co-occurrence in a context, similarity between contexts them-
selves can be incorporated into computing word similarity. For instance, Kandola
et. al. [9] defined word similarity in terms of document similarity and vice-versa
in an unsupervised way. The idea is in accordance with the Distributional Hy-
pothesis which states that words that occur in the same/similar contexts tend to
have similar meanings [6]. A central question in the use of context similarity to
derive word similarity is the impact of corpus parameters (such as its size, and
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number of entries) on the quality of derived word similarities. All the above-cited
work only provide empirical evaluations on specific methods of computing word
similarity.

We have developed cross-context similarity (CCS) to relate both co-occurrence
and similarity between contexts to similarity between the individual terms 1

that comprise the context. CCS is a corpus-based measure, which is particu-
larly useful for applications where related entities are to be computed from a
domain-specific corpus with narrower scope, one that could express similarities
differently from the methods that aim to find generic relatedness using large
number of Wikipedia or New York Times articles. For instance, while (hockey,
soccer) can be considered similar in typical situations, the pair should not be
considered similar when the focus is on different sports. In such applications, a
corpus-specific similarity measure would be more desirable than a method based
on external knowledge. Our model is based on computing cross-occurrence which
is defined as a measure of the weighted co-occurrence between terms in similar
contexts. We present a detailed analysis when the corpus is restricted to an ex-
plicit one-to-one mapping of contexts and a latent one-to-one mapping of terms
(referred to as Substitution Translation Model). We show that the cross-context
similarity between two terms that are not a translation of each other is small. We
quantify the effect of context size and vocabulary size on cross-context similarity
of unrelated words. We also show that the maximum similarity value is reached
only when the pair of terms perfectly co-occur in every context. We have also
found that CCS performs well on multi-lingual word association task.

2 Cross Context Similarity

To find similarity between two terms, we make the assumption that a pair of
words occurring in many pairs of similar contexts are similar to each other.
Here a context could mean a phrase, a sentence or a document. The intuitive
idea for calculating cross-context similarity of words wi and wj is to examine
the similarity of all those pairs of contexts (Dm, Dn), such that wi ∈ Dm and
wj ∈ Dn. Next, we formally define cross-context similarity.

2.1 Similarity Formula

Consider a corpus as a set of contexts D = {D1, D2, . . . , D|D|}, where every
context is a set of words. Let W be the set of all words covered by D, i.e.,
W =

⋃

m Dm. Assume that the similarity of every pair of contexts is known. Let
em,n ≥ 0 denote the similarity betweenDm andDn. We represent the corpus as a
two-layer network (Figure 1). The bottom layer is a directed graph representation
of the contexts, where each node is a context and a weighted directed edge
between Dm and Dn with weight em,n represents context similarity. Similarly,
the top layer is a directed graph, with words as nodes and directed edges among

1 term and word has been used interchangeably in this paper.
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pairs of words with unknown weights. There is an undirected link with a weight
ti,m between Dm in the bottom level and wi in the top level, representing the
membership of wi in Dm. The values of ti,m could be frequency counts, tf-idf
values or simply binary values representing presence/absence. We wish to assign
weights to the edges between word pairs representing a relatedness score. For
this, first we define Cross-Occurrence (COλ) as a score between two words wi

and wj that measures a weighted co-occurrence of these words in similar contexts
-

COλ(wi, wj) =
∑

m

∑

n6=m

ti,mem,ntj,n + λM
∑

m

ti,mtj,n (1)

where ti,m ≥ 0 is the weight associated with wi in Dm, and M is the maximum
context similarity that can be attained. λ ∈ [0, 1] is a parameter that represents
the weight we wish to assign to the similarity arising from co-occurrence in same
context. Based on the Cross-Occurrence scores, we define cross-context similarity
(CCSλ) between two words wi and wj as

CCSλ(wi, wj) =
COλ(wi, wj)

max{CO1(wi, wi), CO1(wj , wj)}
. (2)

This can be rewritten in the form of matrix operations as

Cλ = (DTED) + λM(DTD),

And, S = Cλ ⊘ (Fmax), (3)

where [C]i,j = CO(wi, wj), [S]i,j = CCS(wi, wj), [D]i,j = tj,i, [Fmax]i,j =
max{[C1]i,i, [C1]j,j}, and ‘⊘’ represents matrix element-wise division. E is the
weighted adjacency matrix, such that [E]m,n = em,n for m 6= n and 0 otherwise.
If E follows certain properties, then we can show that CCS is bounded.

Theorem 1. Let I be the unit matrix of size |D| × |D|. If E +MI is positive
semi-definite, then 0 ≤ CCSλ(wi, wj) ≤ 1∀wi, wj.

3 Translation Model for Multi-lingual Word Association

Mining

In the previous section, we modeled a single set of contexts D and a set of words
W , and we used CCS to find the similarities between all pairs (wi, wj). By
refining this formulation, it is possible to represent more complex relationships
in a corpus. For instance, consider a corpus of scientific articles that contains
some scientific terms and some English words. High similarity between a scientific
term wi and an English word wj would represent how well wj describes wi. Here,
the top level is a bipartite graph, i.e, W = W 1 ∪W 2,W 1 ∩W 2 = ∅. There are
two types of words present in the corpus and we compute CCS(wi, wj) such
that wi ∈ W 1 and wj ∈ W 2 (Figure 2(a)). As a more complex example, suppose
in our corpus we have translations of sentences from one language to the other,
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Fig. 1. Representing a corpus as a two-layer network.

(a) Top level bipartite (b) Both levels bipartite

Fig. 2. Capturing more refined relationships with cross-context similarity.

with scores representing how good a pair of translation is. We wish to construct
a word-level dictionary between these two languages. Here, both the layers are
bipartite graphs, i.e., W = W 1∪W 2 and D = D1∪D2,D1∩D2 = ∅. There are
directed edges only from contexts in D1 to contexts in D2 (Fig 2(b)). Again, we
compute CCS(wi, wj), such that wi ∈ W 1 and wj ∈ W 2. Next we analyze the
behavior of CCS for dictionary construction.

Consider two hypothetical languages L1 and L2. Assume that we have par-
allel texts (sentences) of these two languages. There are two types of contexts,
one type for each of the two languages. The set of words can also be parti-
tioned into two sets - words belonging to L1 and L2 respectively. Each context
of one language can be mapped to one context in the other language, which is its
translation. Our objective is to learn multi-lingual word association dictionary,
i.e., the “translation” of individual words. A score associated with pair of words
across the two languages is to be mined, based on sentence-level translations D1

and D2 consists of the contexts in L1 and L2 respectively. Similarly, W 1 and
W 2 consist of words from L1 and L2 respectively. There is an edge of unit weight
between contexts Dm and Dn if they are translations of each other. Therefore,
em,n ∈ {0, 1}. Also, the maximum context similarity that can be attained is 1,
i.e., M = 1. The score ti,m of a word wi in a context Dm is the indicator function
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Ii,m ∈ {0, 1}, representing the presence of the word in the context. Then, for
wi ∈ W 1 and wj ∈ W 2,

COλ(wi, wj) =
∑

m

∑

n6=m

Ii,mem,nIj,n + λ
∑

m

Ii,mIj,m. (4)

Since, both wi ∈ W 1 and wj ∈ W 2 cannot occur in the same context (because
they are from different languages), Ii,mIj,m = 0, ∀m. So, Equation 4 becomes

COλ(wi, wj) =
∑

m

∑

n6=m

Ii,mem,nIj,n (5)

And,

CO1(wi, wi) =
∑

m

∑

n6=m

Ii,mem,nIi,n +
∑

m

Ii,mIi,m.

Since, wi cannot occur in both Dm and its translation Dn, Ii,mem,nIj,n =
0, ∀m 6= n, and so,

CO1(wi, wi) =
∑

m

Ii,mIi,m

=
∑

m

Ii,m = fi , (6)

where fi is the number of contexts containing wi. We refer to this model as a
Translation Model, when ti,m = Ii,m, and em,n = 1 only if m = n or Dm is the
correct translation of Dn. Thus, for Translation Model,

CCS(wi, wj) =

∑

m

∑

n Ii,mem,nIj,n
max{fi, fj}

. (7)

Note that we have dropped the subscript λ because CCS in Translation Model
becomes independent of λ (Equation 5).

Theorem 2. In Translation Model, 0 ≤ CCS(wi, wj) ≤ 1, ∀i, j

It can be shown that CCS correctly assigns a value of 1 to true word trans-
lations and low values to other pairs for a refinement of the Translation Model.

3.1 Substitution Translation Model

We proceed with a simplified Translation Model and build a generative model
for its analysis.

Definition 1. A Translation Model is Substitution Translation Model (STM),
if every word in wi1 in L1 has a unique translation wi2 in L2 and vice-versa.

Theorem 3. In STM, if wi1 and wi2 are translations of each other, then CCS(wi1, wi2) =
1
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The converse of this theorem is not necessarily true. For instance, suppose
wi1 and wj1 always co-occur, then their corresponding translations wi2 and wj2

always co-occur too. This leads to CCS(wi1, wj2) = CCS(wi2, wj1) = 1. This
can be seen from Theorem 4. However, if wi1 and wj1 can occur independently
in the language, in a large enough corpus, we should observe that wi1 and wj1

do not always co-occur.

Theorem 4. In STM, if wi1, wj1 ∈ L1 do not always co-occur in the same
context, then CCS(wi1, wj2) < 1, where wj2 is the translation of wj1.

Proof. The numerator of CCS(wi1, wj2) in Substitution TranslationModel counts
the number of times wi1 occurs in a context Dm whenever wj2 occurs in its
translation Dn. Since, wj2 must have its translation wj1 in Dm, the numerator
is equivalent to counting the number of co-occurrence of wi1 and wj1. Therefore,

CCS(wi1, wj2) =

∑

m

∑

n Ii1,mem,nIj2,n
max{fi1fj1}

=

∑

m Ii1,mIj1,m
max{fi1fj1}

(8)

We define the following probabilities based on frequency counts -

P (wi) =
fi
|D|

, and P (wi, wj) =

∑

m Ii,mIj,m
|D|

.

Without loss of generality, we may assume P (wj1|wi1) ≤ P (wi1|wj1). Notice
that P (wj1|wi1) < 1, otherwise, P (wj1|wi1) = 1 =⇒ P (wj1|wi1) = 1 =⇒
P (wi1) = P (wj1) = P (wi1, wj1), i.e., wi1 and wj1 always co-occur, which is a
contradiction. Then, Equation 8 can be rewritten as

CCS(wi1, wj2) =
P (wi1, wj1)

max{P (wi1), P (wj1)}
(9)

= P (wj1|wi1)
P (wi1)

max{P (wi1), P (wj1)}

≤ P (wj1|wi1) < 1

Hence, CCS(wi1, wj2) < 1. More precisely CCS(wi1, wj2) ≤ min{P (wj1|wi1), P (wi1|wj1)}.

We have shown that for a sufficiently large corpus, CCS between two words
which are not the translation of each other is less than one. In practice, we
would like this value to be small. To investigate the effect of size of the contexts
(number of words in a context) and vocabulary size, we model the generation
of contexts as an evolving bipartite graph. In [5], evolving bipartite graphs have
been studied by constructing an analogy with Pólya’s urn scheme to predict
the degree distribution after infinite time. Proceeding with similar modeling, we
assume that the vocabularyW 1 is fixed and the set of contextsD1 is growing. At
each time step t, a new vertex (context) D1

t is introduced in D1. This new node
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produces k edges and sequentially attaches with words in W 1. The words are
selected preferentially [1] based on their degrees. Sequential attachment means
that the degree of the words are updated after each edge attachment. So we use
a more granular time τ , which increments after each edge attachment.

The following events take place at every time-step t.

– A new vertex D1
t is introduced in D1.

– A number k is selected with probability pk from a probability distribution
with first moment µ and second moment µ′.

– For each r = 1, 2, . . . , k an edge is introduced from D1
t to a word selected

from W 1 according to the preferential rule based on its degree -

P (degτ (wi) = degτ−1(wi) + 1) ∝ degτ−1(wi) + δ

where δ is a constant to introduce some randomness in preferential attach-
ment. We have dropped the subscript 1 from wi1 for ease of notation. Hence-
forth, unless mentioned otherwise, wi refers to wi1.

We assume that the process continues for infinite time. It can be shown [5]
that the sequence of indicator functions representing if a word was selected at
time τ is exchangeable. Therefore, by de Finetti’s theorem [3] there exists a prob-
ability distribution function f(θi), such that the selection of a word wi according
to the above mentioned rules is equivalent to a collection of i.i.d. Bernoulli pro-
cesses each with parameter θi, where θi is drawn from the distribution f(θi).
Since t = |D1|,

P (wi) = lim
t→∞

1

t

∑

m

Ii,m = E(Ii,m) , ∀m

=
∑

k

pk(1− (1 − θi)
k)

=
∑

k

pk(kθi + k(k − 1)θ2i /2 + . . . ) (10)

Assuming kθ ≪ 1 and ignoring terms with cubic and higher powers, and after
some algebraic manipulation (omitted for brevity), we get

P (wi) ≅ (µ′ − µ)θ2i

(

µ

(µ′ − µ)θi
−

1

2

)

. (11)

Similarly we proceed to find the probability of co-occurrence P (wi, wj) =
E(Ii,mIj,m). Suppose for a randomly selected context of size k, the number of
edges attached to wi is k1, and the number of edges attached to wj is k2. Then

P (k1 = l1, k2 = l2|k) =

(

k

l1, l2

)

θl1i θl2j (1 − θi − θj)
k−l1−l2 . (12)
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Now, co-occurrence probability is given by

P (wi, wj) = E(Ii,mIj,m)

=
∑

k

pk
∑

l1>0,l2>0

P (k1 = l1, k2 = l2|k)

=
∑

k

pk(1 − P (k1 > 0, k2 = 0|k)

− P (k1 = 0, k2 > 0|k) + P (k1 = 0, k2 = 0|k))

=
∑

k

pk(1 − (1− θi)
k − (1− θj)

k + (1− θi − θj)
k) (13)

Expanding to quadratic terms and some algebraic manipulations lead to

P (wi, wj) ≅ (µ′ − µ)θiθj (14)

Finally, replacing the expressions for P (wi, wj), P (wi) and P (wj) in Equation 9,
obtained from the evolving graph model, we get

CCS(wi1, wj2) ≅
θiθj

max{θ2i

(

µ
(µ′−µ)θi

− 1
2

)

, θ2j

(

µ
(µ′−µ)θj

− 1
2

)

}
(15)

Insight 1: Effect of context size and vocabulary size Since we expect two indepen-
dent words to have low similarity, we get from Equation 15 that µ

(µ′−µ)θi
≫ 1/2.

This means that both θi and µ′/µ should be small. For an alternate interpreta-
tion, consider the case where the contexts have fixed size K. Then µ = K and
µ′ = K2, and Equation 15 becomes

CCS(wi1, wj2) ≅
θiθj

max{θ2i

(

1
(K−1)θi

− 1
2

)

, θ2j

(

1
(K−1)θj

− 1
2

)

}
. (16)

Assuming without loss of generality that θi ≥ θj , it can be shown that

CCS(wi1, wj2) ≅
θiθj

θ2i

(

1
(K−1)θi

− 1
2

) (17)

From this equation, it follows that (K−1)θi ≪ 2, i.e., the size of contexts should
be small. Also, θi should be small, which is likely to happen if the vocabulary is
large. Further, we have also made the assumption that the number of contexts
|D1| is very large.

Insight 2: The independence assumption While deriving Equation 15 using evolv-
ing bipartite graph model, we made an assumption that picking of a word in a
context is independent of what words have already been picked in the same con-
text. In practice, this may not be true, and so we may get some pairs which are
not the translations of each other, and yet have high similarity. This, however,
indicates a certain relatedness among these two words, and this could be useful
because it may convey some more information, like synonyms of a word.
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3.2 Model Evaluation

We experimentally verify the inferences drawn from the evolving bipartite model
by applying the similarity measure on a cipher that fits Substitution Transla-
tion Model. since one to one mapping of words is not frequent among natural
languages, it is improper to use them to verify the theory. However such map-
pings are observed in cryptanalysis tasks, where plaintext and ciphertext both
are available. The objective of this experiment is not to solve a cipher but to gain
more insight of CCS. We consider a simplified form of Substitution-Permutation
cipher [10], as shown in Figure 3. The hypothetical cipher is applied by the fol-
lowing steps:

– Apply a one-to-one map of letter substitution to the plain-text.
– Choose a block size k and partition the string into blocks of size k (k char-

acters).
– Permute the letters within each block.

Fig. 3. A hypothetical substitution permutation: First a substitution is applied. Then
the text is split into blocks of size k (here k=4). A random permutation is applied
within each block to get the final ciphertext.

This fits the substitution translation model as for each letter wi1 in plaintext,
there is a unique letter substitution wi2 in ciphertext. Presence of permutation
within the blocks makes it difficult to recover the substitutions. However, by
applying CCS and looking at the similarity values, we may recover the substi-
tutions.

We take a long document in English 2 which has all the punctuations and
spaces removed. The entire document consists of letters A to Z. We applied
a random substitution from {A,B, . . . , Z} to {a, b, . . . , z}, and split the resul-
tant text into blocks of equal size. Then we applied permutation within each

2 The document is publicly accessible at https://www.dropbox.com/s/fwbiwb9s3nd3w5j/english.data

https://www.dropbox.com/s/fwbiwb9s3nd3w5j/english.data
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Fig. 4. Experiments with deciphering: Effect of (a) number of blocks and (b) block size
on accuracy. Both figures demonstrate that a high accuracy is achieved when block size
is small and number of blocks is large.

block. We attempt to recover the substitutions by finding CCS(wi1, wj2)∀wi1 ∈
{A,B, . . . , Z} and wj2 ∈ {a, b, . . . , z}. Finally, substitution for wi1 is predicted
using -

wi2 = arg max
j2

CCS(wi1, wj2). (18)

Note that the maximum value of CCS(wi1, wj2) in Equation 18 is always 1.
Let L = {wj2 : CCS(wi1, wj2) = 1}. Theorem 3 guarantees that the original
substitution will receive a CCS value of 1. However, since the converse is not
true, more than one letter may receive a CCS value of 1 with wi1, i.e., |L| ≥ 1. If
|L| = 1, then we select the one element as wi2, otherwise we return a randomly
selected element from |L|.

Figure 4 shows the accuracies obtained in the experiments. First, we fixed
the block size and varied number of blocks (Figure 4(a)). As the number of
blocks increases the accuracy of the method increases. Also, a higher accuracy
is reached more quickly when the block size is small. If the block size increases,
more number of blocks are required to achieve the same accuracy. Second, we
fixed the number of blocks and varied the block size (Figure 4(b)). A decreasing
trend in accuracy is clear with increasing block size. It can again be noted that
for a given block size, larger number of blocks produces better accuracy. These
results are consistent with our inferences from the evolving bipartite model, that
small context (block) size and large number of contexts (blocks) are favorable
for accurately learning the substitution.

Multilingual Word Association We used CCS to find translations of words
among English and Spanish words using a corpus of parallel text3. CCS outper-
formed conditional probability, point-wise mutual information and cross-lingual
LSI (See Figure 5). The details of the experiment have been omitted for brevity.

3 The dataset is publicly available at http://www.statmt.org/europarl/v7/es-en.tgz

http://www.statmt.org/europarl/v7/es-en.tgz
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Fig. 5. Comparison of accuracy of CCS with baselines for English-Spanish word trans-
lation.

4 Conclusion

We introduced the concept of cross-context similarity, which is useful when con-
text sizes are small and hence co-occurrence information is not enough to learn
word relatedness. The cross-context similarity model can be used to mathemat-
ically analyze the relationship between vocabulary and context size: for cross-
context similarity to be small for unrelated words, the size of the vocabulary
should be large and the size of each context should be small. We demonstrated
the correctness of this theory through substitution-permutation deciphering; de-
ciphering is accurate when the permutation block size is small. As the block size
increases, a larger number of blocks is required to achieve the same accuracy.
We have also seen that CCS outperforms PMI and CL-LSI in the task of finding
the right translation of a word among two languages.

In subsequent work, we will further expand on the multilingual word associa-
tion task. We will also extend cross-context similarity to take into account hier-
archical contexts, for instance, similarity of two paragraphs affects the similarity
of the sentences, which in turn may affect similarity of terms. The cross-context
similarity formulation is not limited to text datasets. We will explore similarity
calculation in non-text applications such as ontology matching.
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