Policies, Conversations, and Conversation
Composition

— Authors withheld; references to the implementation system are obfuscated —

Abstract. This paper motivates the use of inter-agent conversations
in agent-based systems and proposes a general design for agent conver-
sations. It also describes an instance of that design implemented in our
experimental agent-based framework. While the agent community is gen-
erally familiar with the concept of a conversation, this paper’s contribu-
tion is a particular model in which flexible composition of conversations
from smaller conversations is possible.

Keywords: Agents, Conversations, Multi-Agent Systems, Communication Pro-
tocols

1 Introduction

The ability to communicate is a prevalent feature of systems where agents rely on
coordination and division of labor. Communication is achieved by externalizing
meaning through an artifact, either by changing the state of an existing object or
by creating a new artifact whose state can be perceived by the intended audience.
In the absence of commonly accessible artifacts, software agents are left with
messages as the innate conduit to support communication and coordination.

Through the years it has become understood that messages are not just iso-
lated tokens of data but that meaning and purpose is also attached to a sequence
of messages exchanged between participants. These sequences, called conversa-
tions, have properties that pertain to sequencing (which places in the conversa-
tion when messages can take place) and turn taking (the set of participants that
could send allowed messages to advance a conversation).

Conversations are normally defined by developers at design time and can
be encoded programmatically or through rules executed at runtime. An advan-
tage of rules over program instructions is they could entail flexible (malleable,
learnable, and blended) conversations given existing agent state. A flexible con-
versation would be one that is able to handle unexpected messages (which could
either be erroneously sent or sent with the intent to refine the context of interac-
tion) by leading to commonly understood conversation states from which agents
could recover and reconvene to an originally intended conversation state.

In this paper we present our approach to encode flexible conversations using
rules, and in particular policies as a higher abstraction to rules, in which poli-
cies can exist in the context of a conversation template. To this end, Section
2 presents our conceptualization of an agent as a software program that holds

conversation policies reacting to message events, has the ability to send and re-
ceive messages, and contains an event queue in which events are scheduled and
acted upon. Sections 3 and 4 present conversations and subconversations, respec-
tively, and Section 5 describes how they are implemented in our experimental
agent-based framework. Lastly, Section 6 presents related work, and Section 7
our conclusions and future work.

2 Policies

While agents may be anywhere on the continuum between reactive to contempla-
tive, we focus on the reactive part because all useful agents need to be reactive
to some extent. A purely contemplative agent would never produce any output,
so would have no useful purpose from our perspective. While we don’t rule out
contemplation, we model an agent as reacting to events, including, importantly,
communicative events. Thus, we will assume an agent has an event queue where
it will look when it’s ready to process the next event (when it’s done with the
current events and any contemplating it’s doing). Following many existing sys-
tems, we use an event queue rather than react immediately to incoming events
because it is not always possible to react immediately to every incoming event.
In order to specify how an agent is to process an event, we choose to use a rule-
based system, where a set of rules will dictate one or more behaviours based on
the event at hand. We call these rules policies because, as the reader will see,
they differ from typical rules seen in the literature.

Since agents are computational entities, we assume all perceivable events
come to it through an event queue. An agent observing an event (really, de-
queueing it from its event queue) will attempt to apply policies to determine
what to do. In this paper, we won’t go into details on how the agent deals with
multiple applicable policies since this issue is independent of policy structure
and application, and can be usefully implemented in a variety of different ways.
Most rule implementations have an antecedent consisting of a boolean expres-
sion; however since the event is the key element which actually stimulates policy
application, we feature the matching of an event descriptor and an event as
the antecedent of a policy. However, we also include a precondition (which is a
boolean expression) which must evaluate to true in order for the policy to be
applied. We use the precondition to filter on the bases of history, agent state,
environmental state, or some combination thereof in the same way as more tradi-
tional rules do. Thus, we can compare the boolean antecedent of a tradition rule
to match(event Descriptor, event) A precondition. This use is similar to rules in
COOL [1].

Traditional rules also have consequents, and policies do too. We model the
consequent as a list of actions which the agent will execute if a policy is fired.
Note that we do not assume that the actions are primitive actions, but may
include conditional actions, angelic choice among actions, repeated actions, pa-
rameterized actions, etc. Actions may include anything the agent can do, such
as sending messages, changing state, etc. As well as at the consequent, we in-

clude in policies a postcondition which resembles the precondition in that it is
a boolean expression describing some state of the agent or the environment,
but it is interpreted as the expected state immediately after the policy is fired.
The postcondition is useful for planning and analysis, but there is no guarantee
the postcondition holds after a policy fires, as unanticipated outcomes (such as
errors and failures) can always happen. The postcondition is similar to FIPA’s
rational effect [2].

Formally, a policy consists of an antecedent, precondition, postcondition, and

t:
consequen Policy = (antecedent : Antecedent,

precondition : Precondition,
postcondition : Postcondition,
consequent : Consequent)

The next subsections will describe these four components of a policy in detail.
However, we first give some general definitions of properties:
Property = Identifier — T
Properties = Identifier + T

That is, we use Property to describe a single attribute/value pair, and Properties
to describe a (possibly empty) set of attribute/value pairs.

Antecedents An antecedent to a policy is just a description of an event that
may occur. If the event description matches the event that just occurred, then
the policy may! be eligible to be fired.

An event is an abstract occurrence that is observable by the agent. We take
events to have abstract types arranged in a type lattice. For example, in some ap-
plication, both horseRace and race could be events with a subsumption relation
between them which we describe as horseRace < race. Formally, the subsumption
relation is partially ordered set (poset) which we will call the event ontology:

EventOnt = (id : Identifier, <)

such that EvenOnt is a lattice. That is, an event ontology is some set of identifiers
and a subsumption relation among these identifiers.

An individual event is slightly more than that, as an individual event might
have properties specific to the individual. Thus, the type of an event is Event:

Event = (type: EventOnt, props: Properties)

That is, we describe an event as a type identifier (from an event ontology)
and a set of attribute/value pairs. Unlike in most object-oriented programming
languages, we choose not to constrain particular types to hold specific properties,
but let the concept of type and the concept of properties float independently of
one another.

We want to fire policies when we match the antecedent of the policy with
an event that has occurred. Thus, we need an object to describe an event. We

! The policy will be eligible to be fired if the precondition is also true (see §2).

call that object an event descriptor, and it differs only slightly from an event
itself. The event descriptor looks like an event, but for each property, it holds
not only a value, but a comparator operator to use in comparing the values of
the property to that of an event. Thus, we describe event descriptors as type
FEventDescriptor:

FEventDescriptor = (type:EventOnt, props: Identifier+ (T, op:Operator))
where Operator = T x T

That is, an Event Descriptor looks just like an event, except that its properties
map identifiers not only to values, but also to operators, which are comparator
predicates describing how the values are to be compared to corresponding values
in an event. In practice, useful operators we have encountered are subsumption
(via the ontology), equality, the simple math inequalities, and regular expression
comparators [5].

An antecedent of a policy in nothing more than an event descriptor:

Antecedent = EventDescriptor

More complex antecedents are possible, such as disjuncts of event descriptors,
but we have not yet observed the need in practice.

The policy passes the antecedent if the event descriptor matches. An event
descriptor matches an event if its type subsumes the type of the event and each
of its properties’ values is a match with the corresponding property value of the
event according to operator associated with that property:

matches(event, desc) = event.type < desc.type A
Vt: domdesc.props e
desc.props(t).op(event.props(t), first desc.props(t))

It may seem odd that an antecedent is no more than an event descriptor
because agents typically take into account the environment or history when
making decisions. We choose to separate the matching of the event from decisions
about the environment or history by using both the antecedent and requiring the
precondition to hold as well. The precondition is described in the next section.

Preconditions A precondition describes the state (of the agent or the environ-
ment) that must be satisfied in order for the policy to be eligible to fire.

Precondition = boolean expression

We interpret state broadly (to include history), and it is therefore no more
constrained than any arbitrary boolean expression.

Consequents A consequent is a list of actions that will be executed if the
policy fires. We do not describe actions in detail in this paper. Actions are
application dependent, although there obviously include speech acts which are
used by almost all muliti-agent systems, but vary in detail between systems.

Actions may be more than atomic or primitive, but may include composition of
actions including conditional actions, angelic choice between actions, repeated
actions, parameterized actions, etc. All we can say about actions is that they
are of type Action. A consequent then, is merely a list of actions:

Consequent = seq Action

Postconditions A postcondition is a partial description of the expected state
of the environment immediately after the policy is executed. The word ezpected
here is important as there is no guarantee that the state will actually conform
to that state: errors may have occurred, or some other unforeseen process may
have influenced the state. However, the postcondition is useful for planning and
analysis. Since agents are purely computation entities, a partial state can be
described by an arbitrary boolean expression, and therefore the type of the
postcondition is merely a boolean expression:

Postcondition = boolean expression

Applicability of Policies When an event happens, an agent must determine
which of its policies is applicable. In a simple rule-based system, this is accom-
plished by merely evaluating the antecedents of the rules, and all those who’s
antecedents evaluate to true are applicable. This situation is only slightly more
complex in policies in that we evaluate the precondition and whether the an-
tecedent matches the current event:
applicable(policy, event) = matches(policy.antecedent, event)
A policy.precondition

As already explained, multiple policies may be applicable an event, and this
decision is application dependent. However, our default approach is to fire all
applicable policies, basing the firing order on a measure of specialization of the
antecedent match. Space limitations preclude a detailed discussion on this topic.

3 Conversations

Naively, a designer could write a policy-based agent in which the agent has a
set of policies that it applies to each event it sees. However, the designer would
quickly see the agent becoming increasingly complex as the agent has to account
for multiple concurrent conversations, erroneous messages, maliciously construed
messages from other agents, and data associated with individual conversations.
The problem is one of history-state, similar to the states in a state diagram. For
example, a simple conversation protocol could be that buyer may request an item
from a supplier at a certain price, to which the supplier could agree or refuse
(see Figure 1). Given this simple protocol, a devious supplier might unilaterally
send an agree to a buyer to sell a certain item at a certain (high) price. A
naive buyer could be tricked into purchasing the unwanted item. The problem

client server

ﬁ =wait-agree | refuse/a | =bterminated
|:

P =wait-prop-dis | propose/discharge(c) | ?wait-agree-prop-dis
<

C\I =wait-agree-prop-dis |refuse/discharge(a) (j
|| g

=wait-agree-prop-dis | agree/discharge(a)

Fig. 1. A simple request conversation. Arrows are messages between agents. Messages
are labeled with the performative of the message (e.g.: “request”, followed by a slash
and the content of the message (e.g.: “a”). Boxes with “=" represent preconditions
of the state property of the policy handling the message. Boxes with “—” represent
setting the state property in the consequent of policies handling the message.

AV

>
«

>

can be easily handled with state: in its initial state, the protocol would only
entertain a request, after which it would only entertain an agree or a refuse.
An out-of-the-blue agree would be handled as if the message was not understood
(because, out of context, it isn’t). The reader may have the impression this design
is a finite state machine, however, conversation state is not required, merely a
helpful concept that we have found convenient for conversational design. The
problem stated here can also be solved by referring explicitly to past events, but
modeling these with state tends to be easier for the conversation designer.

In addition to the simple history-based state described above, conversations
usually have other state information associated with them such as “who is the
debtor and and who is the creditor in the conversation?” Furthermore, an agent
may carry on several conversations with several different agents concurrently.
All this suggests that, although agents certainly need policies at the top level,
conversations should be objects that contain conversation-specific policies and
represent their own state (where that state might contain history).

With respect to events, policies, and conversations, we model an agent as
containing an event queue, a set of global policies, a set of conversation templates,
and a set of current conversations. When an agent dequeues an event from
the event queue, it checks to see if it’s a message event (sent, received, or just
observed), and if it is, there should be a conversation id associated with it. The
agent then checks to see if the conversation id matches the id of any of its current
conversations. If it does, it checks to see if any of the conversation’s policies are
applicable, and if there are, it fires these policies. On the other hand, if either
there is no matching conversation or the matching conversation has no applicable
policies, the agent consults its global policies to determine a course of action. (If
nothing matches, there is usually a catch-all policy which handles the error.)

Among the global policies are policies that will create a conversation. Ob-
viously, in situations like the receipt of a request message, there is no current
conversation, so there must be a global policy that recognizes a request mes-
sage whose consequent includes creating a conversation to handle the request.

client server

propose:‘a =»wait-agree
=wait-agree | refuse/a | =*terminated r
»
Lt |
=wait-agree | agree/a | <wait-prop-dis
|-

>
=wait-prop-dis | propose/discharge(c) | ?wait-agree-prop-dis
=wait-agree-prop-dis |refuse/discharge(a) r” j
g8
=wait-agree-prop-dis | agree/discharge(c)

Fig. 2. A simple propose conversation.

__/.IL

[y
L/ A

|

Such policies create new conversations by cloning a new conversation from the
conversation templates.

Under this model, a conversation is a set of policies, a state variable, and a
set of properties:

SimpleConversation = (policies:(]P’ Policy),
state: Identifier — Identifier
props: Properties)
s.t. state € props A first state = “state”
Here, we have chosen to include state as just-another-property, however we dis-
tinguish it for reasons that will become apparent in §4.

Policies are no different from the global policies described in §2, except that
they will be evaluated and fired within the context of the conversation. That is,
the conversation object and its properties will be available to any code in the
antecedent, precondition, consequent, or postcondition.

As already mentioned, the conversation state is modeled as just another
conversation property who’s value is a simple identifier. State is distinguished
among the other properties only because it is so commonly used in conversation
modeling. We use state to model the over-all state of the conversation, similar
to the “current” state in a state diagram. While more complex models of state,
such as those entailed in Petri nets, are possible, we choose to keep the state
model simple.

Conversation properties are simple attribute/value pairs. Since we endeavor
to keep our model as general as possible, we impose no restriction on properties.

4 Subconversations

Above, we have described atomic conversations as SimpleConversation. How-
ever, we want conversations to be compose-able; that is, to build up complex con-
versations from simpler conversations nested within. For example, if one looks at
the request conversation (Figure 1) and the propose conversation (Figure 2), one
can see that the second half of each conversation is identical. It would be better
if we could write the discharge (second half) sub conversation once, and include

wait-agree-req ‘ | wait-agree-prop

client server| |client
t| request/a |=dwait-agree
I

&

l

\l ‘ =wait-agree ‘ refuse/a | =rterminated ‘ (
| »

server

\
\I | =wait-agree | refusefa | =»terminated |
-

T\V

|=wait—agree| agreefa |-)wait—prop—dis| ‘:wait—agree agree/a |-bwaitfprop—dis‘

P =wait-prop-dis | propose/discharge(c) | ®wait-agree-prop-dis
e

Cﬁ =wait-agree-prop-dis |refuse/discharge(a) |/)
| g

=wait-agree-prop-dis |agree/discharge(a)} | #+terminated

Fig. 3. A request/propose conversation.

>

it in both conversations. Even better, we could compose the first halves of both
the request and propose conversations with the discharge sub conversation to
create a request/propose conversation which represents a transaction that could
be initiated by either the client or the server (see Figure 3).

Sub-conversations have many benefits analogous to composition and nesting
of functions in programming languages. However, unlike programming language
functions (which use control transfer and parameters to coordinate the com-
ponents) sub-conversation coordination does not necessarily enjoy clean control
transfer?, and requires shared properties instead of parameters. We therefore
share properties between super-conversations and their contained sub-conversa-
tions. However there is a problem here: The super- and sub-conversations may
have been written independently, and their property names may not seman-
tically align (i.e.: a super conversation’s property may have a different name
from a child conversation’s property for the same semantic meaning). Therefore,
we must include a way of binding property identifiers between super- and sub-
conversations such that identifiers may be recognized as the same thing, but with
different names. Binding two identifiers means that they share a memory loca-
tion, and therefore bindings in super- and sub-conversations affect each other.
These bindings will be defined as part of the super-conversation’s definition (not
the sub-conversation’s) as developer of sub-conversations cannot be expected to
know where their sub-conversations are going to be included.

A similar problem develops on a lower level with binding of the value of the
state property: Sometimes a sub-conversations state value may hold a differ-
ent semantics from the same state value of the super-conversation. For exam-
ple, frequently the terminated state of a sub-conversation merely signals to the
super-conversation a new (non-terminal) state.

Thus, we can define a full conversation as an extensions of the previously-
defined simple conversation (additions bolded):

2 Sometimes more than one sub-conversation will be operating concurrently.

Conversation = (policies: P Policy,
state: Property,
props: Properties,
children:P Conversation,
binds:P Binding,
bindState:P StateBinding)

Property bindings bind a property identifier in the super conversation to a dis-
tinct property identifier in a particular sub-conversation:
Binding = (symbol :dom props,
child: children,
childSymbol : dom child.props)

If any particular property identifier appears in both a sub-conversation and its
super conversation but is otherwise unbound, the two are assumed to be bound.

State bindings bind value identifiers of the sub-conversation’s state property
to different state value identifiers of the super-conversation:

StateBinding = (val: T, child: children, childVal:T)

If identical state values appear in both a sub-conversation and its super-conver-
sation, they area assumed bound. If a state value is assigned to the shared state
property that doesn’t appear in the sub-conversation, and is not bound to state
value in the sub-conversation, then it cannot match any state expression in the
sub-conversation.

The need for state value bindings is illustrated in the example in Figure
3. Note that the request sub-conversation and propose sub-conversation both
change the state to wait-agree upon processing a request message or a propose
message respectively. In this case, without state value bindings, the conversation
would allow either the client or the server to send an agree or refuse message.
This is not what we want. By binding the request sub-conversation’s wait-agree
state value to a different identifier in the super-conversation’s state value than
the propose sub-conversation’s wait-agee state value, the two identifiers become
distinct and the receipt of a request message allows only the server to respond
with an agree message, and, respectively the receipt of a propose message allows
only the client to respond with an agree message.

5 Implementation

Policies and conversations have been implemented as described here in out ex-
perimental agent based framework [5]. Our system is written in Java and uses
Common Lisp as a run-time scripting language. Our system’s main goal is to
provide flexibility in agent development by using plug-in and scriptable com-
ponents to implement all major agent functionality. For example, policies and
conversation protocols are never hard-coded, but are read in at agent startup
from script files. Since the scripting language is Lisp, and Lisp is a full pro-
gramming language on its own, these scripts can be as simple or as complex as
desired. For example, a definition of a policy to ignore outgoing messages with
a performative of “not-understood” can be written as follows:

(policy
‘ (msgevent-descriptor event_messageSent :=performative not-understood)
“(nil))

Here, policy is a lisp function call which defines a policy object. It has two
required parameters: an antecedent which is an FventDescrptor object (see
82) and a consequent which is executable code (a list of actions). Both these
parameters are quoted (single backquote before the open parenthesis) so that
they may be executed and instantiated in the context of the event at runtime,
and not in the context of agent load time.

The conversation of Figure 3 can be defined as follows:

(conversation "request-propose-conversation"

(list
ask-client ; previously defined
offer-client ; sub-conversations

discharge-client)
:bind-state ‘(
("wait-agree-req" ask-client "wait-agree")
("wait-discharge" ask-client "terminated-pending")
("wait-agree-prop" offer-client "wait-agree")
("wait-discharge" offer-client "terminated-pending")
("init" discharge-client "blocked-init")
("wait-request" discharge-client "blocked-request")
("wait-propose" discharge-client "blocked-propose")
("wait-discharge" discharge-client "init")
("wait-propose-discharge-reply" discharge-client "wait-propose"))
:bind-var ’(
("server"
(if (agent.isa (event.get-msg ’performative) request)
(new-url (event.get-msg ’receiver))
(new-url (event.get-msg ’sender))))
("client"
(if (agent.isa (event.get-msg ’performative) request)
(new-url (event.get-msg ’sender))
(new-url (event.get-msg ’receiver))))))

The conversation function constructs a conversation object. The first required
parameter names the conversation. The second required parameter is a mixed
list of sub-conversations and policies. In this case there are no top-level policies
— they are all contained in the sub-conversations. The key parameters shown are
as follows:

:bind-state is a list of triples of super-conversation state property values,
sub-conversation names, and sub-conversation state property values that de-
scribe its binding between values as per §4.

:bind-var is a list of pairs of property identifiers and their values. These val-
ues illustrate how run-time Lisp code can be used to dynamically set a value: in
this case the value of the client and server properties are dependent on the perfor-
mative of the initial message in the conversation. The super- to sub-conversation
bindings of property identifiers (§4) does not occur in this example.

In practice, our framework’s conversations typically take advantage of Lisp’s
defun (function definition) to define conversations at the speech-act [7] level.
defun parameters can be used to flexibly customize conversations to the actual
conversation template level. Thus, one can define a basic request conversation at
the speech act level, but customize it to data requests, specific service requests,
etc that may follow different processes at the action level.

6 Relation to Other Work

The current work is most closely related to COOL [1] which Barbuceanu and
Fox consider addressing the “conventions” (coordination) level of agent inter-
action. Their model includes a numerically-labeled state in a finite state ma-
chine (analogous to our state property), messages with performatives (almost
identical to ours), conversation rules (analogous to our conversation policies),
error-recovery rules (the concept is captured within our global policies), contin-
uation rules (analogous to our global policies), conversation classes (analogous
to our conversation templates), and actual conversations (analogous to our in-
stantiated conversations). Furthermore, COOL’s rules are similar to our policies
in that they have a received field (analogous to our antecedent), a such-that
field (analogous to our precondition), and collection of fields such as nezt-state
and transmit describing actions (analogous to our consequent). COOL even uses
conversation-scope variables similar to ours. What COOL does not have, how-
ever, is any mechanism to handle composition of conversations as described in §4.
Of less import, we also consider our work to have greater flexibility in terms of
actions: COOL handles a limited set of possible actions as part of its definition,
whereas our work leaves actions open to the full expressibility of the scripting
language (Lisp, in the case of our implementation).

The JADE project [8] is a very well known agent implementation project.
Jade agents interact using messages as described here, but differs dramatically
from the current work when it comes to policies and conversations. JADE is
strictly based on the FIPA model [3], and implements FIPA’s protocols directly
as Java classes [6]. If one needs to diverge from the limited set of interactions
offered by FIPA, then one must program the interactions in Java from scratch
(or subclass one of the existing classes if that is feasible). It is the objective
of the current research to minimize the work of implementing new or variant
protocols. The current work focuses on the protocol (conversation) level rather

than on the implementation level. JADE focuses on implementation using a
pre-defined protocol level (FIPA).

Yet another big MAS project is Cougaar from US Defence Advanced Research
Projects Agency (DARPA). Given its source, it’s not surprising Cougaar has a
main goal of a security and robustness. Cougaar’s inter-agent communication is
not based on any standard, but includes a choice of several build-in protocols [4].
Cougaar offers no particular support for design of new protocols or conversations.

7 Conclusions

This work extends previous work in explaining one way to specify inter-agent
conversations. In particular, these conversations are composable: complex con-
versations can be built up from simpler conversations. Conversation composition
is complicated by synchronization among the conversations, which cannot nec-
essarily be handled by control transfer as is done in programming languages.
Instead, our approach is to share state information. However, state variable
names from different conversations may not always correspond, so our solution
is to provide a mapping from the outer conversation namespace to the contained
conversation’s namespace. It turns out that a mapping between values (as op-
posed to variable names) is also sometimes required. One example is that of the
state variable state, where the terminated value for the state variable in a
sub-conversation signals the sub-conversation’s termination. But in the larger
context of the super-conversation this terminated value is just an intermedi-
ate step where the sub-conversation has completed but the over-all conversation
continues.

References

1. Barbuceanu, M., Fox, M.S.: Cool: A language for describing coordination in multi
agent systems. In: Proceedings of the First International Conference on Multi-Agent
Systems. pp. 17-24. AAA Press/The MIT Press (June 1995)

2. Foundation for Intelligent Physical Agents (FIPA): FIPA communicative act library
specification. document number SC00037J, FIPA TC communication. (Dec 2003),
http://www fipa.org/specs/fipa00037/SC00037J.html

3. Foundation for Intelligent Physical Agents (FIPA): Fipa web site.
http://www.fipa.org (August 2012), http://www.fipa.org

4. Helsinger, A., Thome, M., Wright, T.: Cougaar: a scalable, distributed multi-agent
architecture. In: Systems, Man and Cybernetics, 2004 IEEE International Confer-
ence on. vol. 2, pp. 1910-1917 vol.2 (Oct 2004)

5. Reference removed for double blind refereeing.

6. Nikraz, M., Caire, G., Bahri, P.. A methodology for the analysis and de-
sign of multi-agent systems using jade. International Journal of Com-
puter SystemsScience and Engineering 21(2) (2006), (earlier version)
http://jade.tilab.com/doc/tutorials/JADE_methodology _website_version.pdf

7. Searle, J.: Speech Acts. Cambridge University Press (1969)

8. Telecom Italia Lab: Jade (java agent development environment).
http://jade.cselt.it/ (May 2008)

