
Text Relatedness using Google Trigrams:
Efficient Parallelizations

Abstract. Text relatedness measure is an important Natural Language
Processing task in many Text Mining applications. Google Trigram Method,
an unsupervised corpus-based approach, has been shown to capture text
relatedness well. The challenge is in making Google Trigram Method
practical given its high computational complexity. This paper presents
time and space efficient approaches for implementing Google Trigram
Method to make it applicable for large amounts of text. In order to im-
prove the performance, careful algorithmic engineering, data structure
enhancement, and parallel computing are applied in the implementation.
In particular, two parallel methods are discussed in this paper: shared
memory multithreaded implementation and Hadoop-based implementa-
tion. Both parallel methods provide an order of magnitude improvement
in accelerating the text relatedness measure.

1 Introduction

Text relatedness1 plays an important role in many areas of Text Mining, such
as information retrieval [11], text categorization [12], text summarization [6,10],
text classification and text clustering [15]. There are two types of approaches
broadly used for finding the relatedness between texts: corpus-based unsuper-
vised approaches and lexical-based supervised approaches. The corpus-based un-
supervised approaches have some advantages over their counterpart: first, to
create, maintain, and update lexical databases or resources (e.g., WordNet or
Roget’s Thesaurus) require expertise and efforts; second, coverage of words in
lexical resources is not enough for many Text Mining tasks; third, lexical re-
sources are language specific whereas corpus-based approaches are, in general,
language independent as long as there are enough texts of a language [8]. Google
Trigram Method (GTM) published in Canadian AI 2012 [9], which determines
the relatedness between two texts using Google Unigram and Trigram corpus [3],
is one of the state-of-the-art methods of the corpus-based unsupervised approach.

However, applying GTM for large texts is expensive. For example, comput-
ing the relatedness between two texts each containing one hundred words takes
approximately three hours. In addition, many Text Mining tasks, such as clus-
tering or classification of N texts, require N to N text relatedness computation,

in which (N−1)N
2 pairs of text relatedness need to be computed. Applying GTM

in such scenarios is not practical.

1 The term “similarity” has been used in the past to characterize the computation
that is more accurate to be described as “relatedness”, which subsumes similarity.
Therefore, we use relatedness in this paper.
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This paper mainly focuses on the efficient implementation of the GTM for
text relatedness computation. Space and speed improvement are achieved by
corpus preprocessing, data structure enhancement, and parallel computing. In-
depth experimental evaluation and systematic tuning are also addressed in the
paper. One of the key ideas to improve the real-time performance is to com-
pute the intermediate data off-line, so that the intermediate data can be looked
up rather than having to be computed on-line. For space and time efficient
in-memory word relatedness lookups, different dictionary data structures are
explored (Nested Hash, Hash with Concatenate Keys, Parallel Blocking Array).
Two efficient parallel methods are designed for the N to N text relatedness task:
the first uses shared memory mutlicore machines, and the second uses MapRe-
duce model [5].

The rest of this paper is organized as follows: Section 2 presents a brief
overview of the Google Trigram method; Section 3 describes the preprocessing
step; Section 4 introduces the data structure enhancements; Section 5 discusses
the two parallel methods: multi-core and MapReduce; Section 6 presents the
performance evaluation of different data structure enhancements and the two
parallel methods.

2 Google Trigram Method

GTM is an unsupervised corpus-based approach for measuring word and text
relatedness. GTM uses unigrams and trigrams from the Google Web 1T N-gram
corpus [3] to find the relatedness of a pair of words, and extends the word
relatedness method to measure the text relatedness.

The Google Web 1T N-gram corpus, contributed by Google Inc., contains
English word n-grams (from unigrams to 5-grams) and their observed frequency
counts calculated over one trillion words from web page texts collected by Google
in January 2006 [3].

2.1 Word Relatedness Based on Trigrams

GTM measures the relatedness of two words by considering the trigrams that
start and end with the given pair of words and normalizing based on their uni-
gram frequency. The main idea is to take into account all the trigrams that start
and end with the given pair of words and then normalize their mean frequency
using unigram frequency of each of the words as well as the most frequent uni-
gram in the corpus used [8,9]. The notations used in the following equations are
shown in Table 1.

GTM(ω1, ω2) =



log
µT (ω1,ω2)C2

max
C(ω1)C(ω2)min(C(ω1)C(ω2))

−2×log min(C(ω1),C(ω2))
Cmax

if log
µT (ω1,ω2)C

2
max

C(ω1)C(ω2)min(C(ω1)C(ω2))
> 1

log 1.01

−2×log min(C(ω1),C(ω2))
Cmax

if log
µT (ω1,ω2)C

2
max

C(ω1)C(ω2)min(C(ω1)C(ω2))
≤ 1

0 if µT (ω1, ω2) = 0
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2.2 Text Relatedness Based on Trigrams

The text relatedness measurement task is to derive a score between 0 and 1
that indicates the relatedness between two texts [9]. In general text relatedness
can be expressed as a function of word relatedness. In GTM the main idea
of measuring text relatedness is to find the relatedness using GTM on word
relatedness between each word pair of the two texts [9]. For given documents P
and R where |P | ≤ |R|, first all the same words are removed, and then a matrix
with the remaining words P ′ = {p1, p2, · · · , pm} and R′ = {r1, r2, · · · , rn} is
built where each entry aij ← GTM(pi, qj).

M =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
. . .

...

am1 am2 · · · amn


From each row Mi = {ai1 · · · ain} in the matrix, select the significant elements
Ai = {aij |aij > µ(Mi)+σ(Mi)}, where µ(Mi) and σ(Mi) are the mean and stan-
dard deviation of row i. The sum of the means of all the rows is

∑m
ai=1σ(Ai).

Then we can compute the document relatedness using

Rel(P,R) =
(δ +

∑m
ai=1σ(Ai))× (m+ n)

2mn

where δ is the number of removed words when generating P ′ or R′. The other
notations used in the above equation are shown in Table 1

3 Word Relatedness Preprocessing

As shown in Section 2, finding word relatedness is the core operation for mea-
suring text relatedness using GTM. Since using GTM to find text relatedness
required finding relatedness between many different pairs of words, calculat-
ing word relatedness takes a long time. As the number and length of input
texts increase, the cost of finding word relatedness on-line increases accordingly.

Notation Description

C(ω) Frequency of the word ω.
µT (ω1, ω2) Mean frequency of trigrams which either start with ω1 and end with ω2,

or start with ω2 and end with ω1.
σ(a1, . . . , an) Standard deviation of numbers a1, . . . , an

Cmax Maximum frequency among all unigrams.

Table 1: Notation used for GTM word relatedness measurement
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Thereby, finding word relatedness off-line is a necessary step to make GTM ap-
plicable for text relatedness measurement in practise.

The preprocessing step finds all the relatedness between all the word pairs
that exist in the Trigram corpus using GTM, which is an off-line step, so that
a word relatedness dictionary file is derived and stored. In order to reduce the
in-memory size of the word relatedness dictionary each word is assigned an
unique numeric ID, and the word relatedness results are converted from plain
text to binary code at the end of the preprocessing step because loading binary
streams is faster than loading plain texts into memory. The pre-processing step
significantly improves the real-time performance because the word relatedness
can be looked up instead of computed on-line, and repetitive word relatedness
computation are avoided.

4 Efficient Structures for Word Relatedness Lookups

In GTM text relatedness computation, word relatedness is intermediate data
that can be precomputed off-line to reduce the time for on-line computation. To
compute the text relatedness, the word relatedness dictionary needs to be loaded
in memory for lookups. Since the word relatedness dictionary uses word IDs to
identify the word relatedness, words in tokenized texts need to be converted to
IDs for lookups in the dictionary. Efficient implementation of the classic dic-
tionary data structures [4] are required for retrieving IDs for words, as well as
storing and searching word relatedness. Both time and space efficiency are taken
into consideration here. However, these two goals are countervailing sometimes.
This section first introduces a dictionary structure for retrieving the ID for each
word. For the construction of the dictionary of word relatedness in-memory, four
potential data structures are explored.

4.1 Data Structure for Word ID and Frequency

Converting each word to an ID, retrieving word frequencies, and finding the ID
of each word efficiently require an implementation of the dictionary structure.
The design of the structure is shown in Figure 1.

Word Map is a word ID dictionary implemented by a hash table, mapping
word to its ID which is a number in our implementation. The ID is unique for
each word that exists in the Google unigrams. The keys of the hash table are
the words, and the values are the IDs of the words.

Word Statistics is a dictionary implemented by an array that stores word
frequencies from the Google unigrams. The indices of the array are the IDs of
the words, and each entry contains the frequency of the corresponding word.

4.2 Data Structures for Word Relatedness

An in-memory dictionary storing word relatedness needs to be constructed for
text relatedness measurement. In order to achieve fast lookup and minimize the
memory cost, four dictionary structures are designed and explored as following:



5

Fig. 1: Index structure for word statistics.

A two-dimensional array can be used to directly access the word relatedness
(henceforth, Direct Access). In theory, Direct Access has the fastest retrieving
speed, but the size of it is too large to fit into memory since the range of word
ID is the number of words in the Google unigrams.

A more space-efficient structure is Nested Hash Map, implemented by two-
level hash maps to store the word relatedness, as shown in Figure 2a. Nested
Hash Map consists of a primary hash table indexed by the IDs of the first words
in word pairs. The value associated with each index of the primary hash table
is a reference to a secondary hash table indexed by the IDs of the second words
in word pairs. Each value of the secondary hash table stores the corresponding
word relatedness.

(a) Nested Hash Map. (b) Parallel Blocking Array.

Fig. 2: Word relatedness data structures.

To further decrease the size of the word relatedness dictionary in memory,
Hash Map with Concatenated Keys is designed and implemented using only one
hash table. This structure uses the concatenation of two words as the key and
the relatedness between two words as the value in the hash table.

Another way to reduce the memory cost of the structures implemented by
hash tables is to use parallel arrays. The Parallel Blocking Array structure is
illustrated in Figure 2b. The first array, Range Array (RA), is indexed by the
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IDs of the first words in word pairs, and declares the range of the blocks in the
second array, Block Array (BA). Each block in the BA stores the second word
ID associated with the key in the RA. The third array, Word Relatedness Array
(WA) is parallel with the BA, and it stores the relatedness of two words of which
IDs are the corresponding index of the RA and the corresponding value of the
BA. Given two words, a lookup operation first finds the value indexed by the
ID of the first word in the RA. The value found in the RA defines the starting
index and the ending index of the associative block in the BA. Binary Search is
performed on the BA to find the ID of the second word. If the ID of the second
word is not found in the corresponding block in the WA, the operation returns
0. If the ID of the second word is found, the corresponding element in the WA
is returned as the relatedness between the given two words.

5 Parallel Methods for Efficient Implementations

In this section, the two parallel methods for applying GTM on the N to N text
relatedness task are explored: the first is a shared memory multithreaded parallel
implementation and the second is Hadoop-based parallel implementation [7,16],
where Hadoop is a MapReduce Framework.

5.1 Shared Memory Multithreaded Implementation

The shared memory multithreaded implementation makes use of multicores of
shared memory machines. In the implementation, a word relatedness dictionary
is constructed using one of the dictionary data structures, and input texts are
read into token arrays in the shared memory. The construction of the word relat-
edness dictionary and the text token arrays is the sequential part of this parallel
implementation. In the preprocessing step, the word relatedness statistics are
converted into binary format, so the word relatedness dictionary can be con-
structed faster using binary streams. The parallel part of this implementation
uses threads to partition the workload to achieve speed-up on a multicore ma-
chine. A synchronized function, serving as a job scheduler, dynamically passes
one pair of text IDs to each thread a time. Each thread fetches the correspond-
ing texts from the shared memory and computes the relatedness between them.
Word relatedness lookups are executed concurrently during the computation of
text relatedness. All threads run in parallel until all pair-wise text relatedness
are computed.

The limitation of this method is that it is implemented on a single multicore
machine with all the texts stored in the memory of that machine. Thereby, the
parallelism of this method is limited to the resources of one machine.

5.2 Hadooop Based Implementation

The second method employs the Hadoop framework to compute the pair-wise
text relatedness in parallel. Each mapper is responsible for constructing a word
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relatedness dictionary and calculating the pair-wise text relatedness within a
subgroup of texts. Since the word relatedness dictionary takes large space in
memory, each Hadoop node can only run one mapper task at a time. In order
to fully make use of the multicores in one node, multithreaded mappers [16]
are applied. Initially, the order of input texts is randomized so that it does not
correlate with their length. As illustrated in Figures 3, the mapper task scheduler
partitions the text pairs into square blocks, where a set of blocks are passed to
a multithreaded mapper.
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Fig. 3: The Up-triangle Text Relatedness Matrix used for Mapper task distribu-
tion.

Each mapper uses multithreads to partition the workload. Each thread of a
mapper retrieves texts from the Hadoop Distributed File System [14] based on
the block information and calculates the relatedness between each pair of texts.
This task partitioning method minimizes the I/O time required by each mapper
because the number of texts a mapper needs to retrieve from the distributed
memory is minimized. Finally, the reducer [16] receives the output from each
mapper, sorts the keys which are text IDs, and then writes the final results into
one output file.

The following is a more detailed description of the mapper and the reducer
with a particular focus on mapper tasks. A mapper task implements the Parallel
Blocking Array Dictionary data structure and performs the word relatedness
lookups, which are the critical components in terms of the computation efficiency.

Mapper: The mapper, shown in Algorithm 1, takes as input blocks derived
from the texts matrix, each of which represents a subgroup of texts, and it
retrieves the corresponding texts from the distributed file system. Each mapper
also constructs an in-memory word relatedness dictionary for further lookups
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Algorithm 1: Mapper in the Text Relatedness Application

input : Blocks : {B1, B2, · · · , Bm} where m is the number of blocks in a task,
and m is greater than the number of threads in the mapper.

output: A list of entries {T′
a T′

b SIM} which are pairs of Texts IDs and their
relatedness.

1 Construct the word relatedness dictionary from co-occurrence statistics using
the Parallel Blocking Array data structure described in Section 4.

2 Create a concurrent text buffer to store text instances.
3 Parallel for each block, Bi in Blocks do
4 Retrieves the corresponding pre-processed texts from the distributed

systems and stores them in the concurrent text buffer if the text is not in it
yet .

5 for each pair of texts, T′
a, T

′
b, instances in Bi do

6 Apply the Google Trigram Text Relatedness Algorithms to compute the
relatedness between the texts:

7 SIM ← Google Trigram Text Relatedness( T′
a, T′

b)
8 Emit({T′

a T′
b SIM})

9 end

10 end

and text relatedness computation. Then the mapper processes the text pairs
using multithreads in parallel, and thus keeps a concurrent buffer to store text
information instead of repetitively loading the same texts. A mapper generates
a set of key-value pairs, where the keys are the IDs of a pair of texts and the
values are the relatedness scores between the text pairs.

Reducer: The reducer takes the key-value pairs generated by mappers as
input, sorts the pairs by their IDs, and aggregates all the key-value pairs in one
output file.

6 Experimental Evaluation

6.1 Experimental Setup

For the evaluation of candidate word relatedness dictionary structures and shared
memory multithreaded parallel implementation, the experiments were performed
on a Linux server containing 256 GB main memory and 16 Intel Xeon E5-2650
processors (32 logical cores). The Java version was 1.7.0.03 and the experiments
were run when more than 90% CPU and memory were free.

For the evaluation of the Hadoop-based parallel implementation, the exper-
iments were performed on Amazon EC2 m3.xlarge nodes [1], each of which had
4 cores and 15 GB. AWS EMR [2] was used in the experiments, and it was
configured to ami-version 3.2.1 which is equivalent to Hadoop 2.4.0. In order to
reserve enough RAM for the data structures in each mapper, each node is set to
run one mapper a time and the Java heap size of each mapper task is set to 4
GB.
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The experiment data set consists of documents generated from the abstracts
of 10,000 papers published in ACM digital library where each abstract contains
around 200 words. For the word relatedness dictionary structures evaluation, the
input data are word pairs that randomly generated from the abstracts.

6.2 Word Relatedness Dictionary Structure Evaluation

The performance of the candidate word relatedness dictionary structures are
evaluated in terms of time and space cost. The Direct Access structure cannot
fit into the memory of the experimental machine, so Nested Hash Map, Hash
Map with Concatenate Keys, and Parallel Blocking Array are compared in the
evaluation.

In the experiments, relatedness of word pairs ranging from 100,000 to 30,000,000
are tested using the four candidate dictionary structures. Figure 4a shows the
time taken in seconds as a function of the number of word relatedness lookups.
It can be observed that linear growth is achieved by all the dictionary structures
as the number of test cases increases. Table 2 compares the in-memory sizes of
four word relatedness dictionary structures.

Since the implementation is written in Java, various JVM parameters that
impact the garbage collection overhead and the performance data structures were
tuned for experiments. These parameters include the initial heap size and the
ratio between the amounts of space allocated to the young and old generations
in Java’s garbage collector. A higher initial heap size makes the program use
more memory initially but reduces the number of times the heap needs to be
resized as the heap space becomes insufficient to hold newly created objects [13].
Verified experimentally, with limited memory space, setting the initial heap size
to 4 GB results in the best performance for using Parallel Blocking Array to
store word relatedness dictionary, and setting the initial heap size to 10 GB
results in the best performance for using Nested Hash Map or Hash Map with
Concatenate Keys. A higher ratio between the young and old generation’s space
allocations reduces the frequency of minor garbage collection runs but may lead
to old objects remaining in the young generation’s space if there is no room left
in the old generation’s space [13]. Verified experimentally, setting the young-old
ratio to 1:3 results in the best performance for the implementation.

Shown in the Table 2, using Parallel Blocking Array structure to store the
word relatedness dictionary takes the least space in memory. Despite the fact

Structure Size[GB]

Direct Access NA
Nested Hash Map 9.1
Hash Map with Concatenate Keys 8.6
Parallel Blocking Array 3.7

Table 2: Comparison of the in-memory size of dictionary structures
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that Parallel Blocking Array retrieves word relatedness slower than the other
two structures, the word relatedness dictionary is constructed using the Par-
allel Blocking Array structure in the parallel implementations due to memory
restriction.
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6.3 Shared Memory Multithreaded Implementation Evaluation

The speed-up performance of the shared-memory multi-threaded implementation
is the ratio between the running time it achieves on a single core and on P cores.
Linear speed-up means that the speed-up for P cores is P , that is, the work is
perfectly balanced across the cores. For the speed-up test, input size was fixed at
2000 files and the number of threads was increased from 1 to 32. Figures 4b and 4c
show the running times and speed-up achieved, respectively. The construction
of word relatedness dictionary is always sequential which is a fixed overhead.
Even so, up to 16 threads used, the speed-up is close to linear. The speed-up
between 16 and 32 threads is modest as the machine has only 16 physical cores.
The multi-core implementation achieves a speed-up of 20 with 32 logical cores
which is in line of our expectation.

The size-up performance shows how the running time increases with the
input size for a fixed number of cores. We fixed the number of threads at 32 and
increase the input size from 1,000 to 5,000. Since the number of the pair-wise

document relatedness computation is (N−1)N
2 for N input documents, running

time will increase with the order of O(n2). The size-up curve in Figure 4d shows
that the running time is a polynomial function of the number of documents. The
application can compute the relatedness within 1,000 documents in 30 seconds
and 5,000 documents in 15 minutes.

6.4 Hadoop-based Implementation Evaluation

In order to demonstrate the size-up performance of the Hadoop-based implemen-
tation, the number of nodes were fixed at 20 and the number of input documents
was increased from 2,000 to 10,000. Figure 4e shows the running time increases as
expected. The result shows that the Hadoop-based implementation can process
10,000 documents in less than 40 minutes.

The scale-up performance shows the running time of the implementation
while keeping the ratio between input size and nodes fixed. If the running time
remains constant, it implies that the implementation can scale to process a larger
input size. In order to demonstrate the scale-up performance of the Hadoop-
based implementation, the number of document pairs processed by one node
was set to 2,000 and the number of nodes was increased from 1 to 20. Figure 4f
illustrates the scale-up running time which increases only slightly as the number
of nodes increases. The slight increase is caused by the job scheduling of the
Hadoop framework and the network traffic. The steady scale-up time demon-
strates that the implementation is able to process a large number of documents.

7 Conclusion and Future Work

This paper shows that with careful algorithmic engineering and efficient paral-
lelizations, GTM can be made practical and feasible for text relatedness com-
putation. Two parallel implementations were explored, and both improved the
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performance of GTM significantly. The shared memory multithreaded imple-
mentation achieves a close-to-linear speedup with the number of physical cores.
The Hadoop-based implementation has a steady scale-up performance with the
number of nodes.

In the future, the high-performance parallel implementations of GTM will
be applied in text relatedness based applications, such as text clustering and
classification.
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