Active Learning with Clustering and
Unsupervised Feature Learning

Abstract. Active learning is a type of semi-supervised learning in which
the training algorithm is able to obtain the labels of a small portion of the
unlabeled dataset by interacting with an external source (e.g. a human
annotator). One strategy employed in active learning is based on the
exploration of the cluster structure in the data, by using the labels of a
few representative samples in the classification of the remaining points.
In this paper we show that unsupervised feature learning can improve the
“purity” of clusters found, and how this can be combined with a simple
but effective active learning strategy. The proposed method shows state-
of-the art performance in MNIST digit recognition in the semi-supervised
setting.

Keywords: Active Learning, Clustering, Unsupervised Feature Learn-
ing.

1 Introduction

Active learning algorithms can exploit labeled and unlabeled data, as in the
general semi-supervised setting, but instead of using a predefined set of labeled
examples, the training algorithms is allowed to query an oracle during training
(e.g. a human annotator) to obtain the labels of the training examples considered
the most informative. This approach is particularly useful in problems in which
unlabeled data is abundant, but obtaining labels is expensive, such as in protein
classification [18].

There are two main strategies employed in active learning. The most com-
monly explored in previous works is based on the use of labeled examples near
the decision boundary of a discriminative classifier to direct the search in the
hypothesis space in a efficient way. This strategy assumes that points near the
decision boundary are more informative and gives little importance to points
farther away [5]. The second strategy is based on the manifold hypothesis, ac-
cording to which points of real data concentrate in the neighborhood of a low-
dimensional manifold embedded in a high-dimensional space [12,4]. In an ideal
scenario, a clustering algorithm would isolate points of different classes in their
own clusters and one labeled sample for each would be enough to correctly clas-
sify the remaining examples [6]. In practice finding good clusters in complex and
high-dimensional data such as images is not easy.

It has been long suggested that images could be recognized by multiple lay-
ers of feature detectors [15], but it has not been until recently that effective

methods for training models with multiple layers have been devised [8,3]. The
first successful techniques relied on a greedy layer-wise unsupervised procedure
(pre-training) for initializing the network before applying backpropagation. One
perspective of pre-training procedure is that each layer learns to extract good
features from the layer below. In image recognition, for example, a linear clas-
sifier in the output layer can more easily separate different classes in terms of
higher level features, such as object parts, than in terms of the original input,
such as pixels.

In this work we explore the intuition that the same layer-wise unsupervised
training procedure used in deep learning can also be used to transform the in-
put from the original space to a feature space in which clusters are more easily
identifiable. We start by applying an unsupervised feature learning technique to
extract features from unlabeled data. We then convert the raw input into features
and use the k-means algorithm to find clusters in the feature space. Then we
query the labels of the training examples closest to cluster centroids and classify
all points in the same clusters with the same labels. We also propose a probabilis-
tic model to determine the quality of the classification and remove the “excess”
of points classified with low probabilities. Finally, we use the training examples
with the labels found as the training set of a neural network. We demonstrate
experimentally that unsupervised feature learning can improve clustering purity
and we show how the learned features can be combined in a simple but effective
active learning strategy.

2 Unsupervised Feature Learning

Every clustering algorithm needs a measure of dissimilarity (or similarity), such
as the euclidean distance used in k-means. In certain datasets it is easy to notice
that the euclidean distance does not represent well our intuitive notion of what
similar points are. In digit images for example a shifted version of a digit will
stop sharing most pixels in common with the original version and thus their
distance will be large, although they still belong to the same class. Unsupervised
feature learning techniques can be used to convert the raw input to a feature
space where the distance metric can more easily represent the actual notion of
dissimilarity between data points. If we have features which represent objects
parts, for example, it is easier to tell whether two images are similar or not by
checking if they share the same object parts, rather than by comparing their raw
pixels.

2.1 Denoising Auto-Encoder

Unsupervised feature learning has been one of the main factors behind the re-
cent breakthroughs in machine learning [2]. Denoising auto-encoder (DAE) is a
technique that has been proven to yield useful representations despite its sim-
plicity. A DAE is a neural network trained to reconstruct a clean input from a
noisy version [16]. More formally, let Z € [0,1] be a corrupted version of the

input z € [0,1]¢ and @ = {W,b, W’ b’} the encoder and decoder parameters,
respectively. The network computes the reconstruction z, given by

z2=g(W'f(WZ+0b)+b)

where f and g are the activation functions. Usual choices are the logistic function
s(z) = (1 + exp(—z))~" for both encoder and decoder, and the linear activation
function for the decoder when the data is real valued. The network parameters
are optimized such that

1 o e
0* = arg min — L(a:(’),z(l))

where L is a loss function, usually the squared error L(z,z) = ||z — z||? for real
data, and the reconstruction cross-entropy

d
Ly(z,2) = —le- logz; + (1 — x;) log (1 — 2;)
i=1

for binary or near binary inputs. To generate &, one common option is to add
masking noise to the input (i. e. to set each element of x to zero with probability

).

2.2 Stacking Denoising Auto-Encoders

A DAE can be seen as a mapping from a lower to a higher level representation.
Using the output from a previously trained DAE to train a new DAE, we can
build a Stacked Denoising Auto-encoder (SDAE), which is capable of learning
still higher levels representations [17]. Although this greedy unsupervised layer-
wise procedure has been shown to be useful for initializing deep networks for
subsequent fine-tuning, it has fallen out of favor since the publication of better
optimization techniques, such as Hessian-Free Optimization, which can achieve
comparable (or even better) results [11].

3 Active Learning by Clustering

Finding one single big cluster per class in the data in a purely unsupervised way
is intrinsically hard or even impossible. Different criteria used to judge similarity
(e.g. weights given to different features) can lead to different clusters, which do
not necessarily correspond to the classes we want to find. We can though assume
that in general nearby examples belong to the same classes independently of the
distance metric used, forming locally small homogeneous clusters. We can explore
this local structure for active learning by querying the labels of representative
samples from each cluster and assuming their neighbors share the same classes.

Clustering accuracy on MNIST

Accuracy

06 /4 F Features from SDAE| |
/ F-{ Features from PCA
-1 RAW data

5 H H H H H
10 20 30 40 50 60 70 80 90 100
Number of Clusters

Fig. 1. Classification accuracy with 10000 training examples from MNIST. Each image
is labeled with the most frequent class in the cluster. Applying PCA is not better than
using the original input, while features extracted by a SDAFE lead consistently to higher
accuracies. Each point is the average of 10 runs of k-means with random initialization.
The error bar shows the 95% confidence interval.

3.1 Clustering Evaluation on MNIST

The clustering evaluation measure which best reflects our goal of obtaining clus-
ters containing elements from a single class is the Purity. It is a external criterion
(i. e. compares cluster assignments against a gold standard) which is applicable
even when the number of clusters is different from the number of known classes.
It is given by

where N is the total number of data points and nf is the number of points in
cluster k from class j. If we treat the most frequent class of each cluster as the
label given to every element of the cluster by a predictive model, this measure
is equivalent to the common notion of classification accuracy. Whereas we are
most interested in the final prediction, we will therefore use the term accuracy
throughout the paper as a synonym of purity.

To assess the improvements of clustering after feature extraction, we com-
pared the accuracy found by using different features as input. Fig. 1 shows the
increase in classification accuracy in function of the number of clusters used
(i.e. the number of labeled training examples) on a portion of MNIST training
set. While Principal Component Analysis (PCA) did not improve the accuracy,
SDAE consistently led to lower error rates. We tested PCA with number of
components ranging from 50 to 500 and did not find any significant difference
in the results. A major concern in semi-supervised learning is the lack of valida-
tion data for hyperparameter optimization. We assume the premise that labeled
data is scarce, thus any additional labeled data that could be used for validation
would be in most real scenarios better spent as part of the training set. We have
therefore tested a reduced set of hyperparameters to prevent overfitting (one

. Difference between most frequent class and nearest neighbor
T T

- SDAE data
F-1 PCA data
0.015 -1 RAW data |]

NN S led= 11 R

0.000 (2]

0.0:

0.020]

Difference in Accuracy

~0.005|

-0.010
0 20 40 60 80 100

Number of Clusters

Fig. 2. Difference in accuracy by classifying points in each cluster with the most fre-
quent class within it and with the label of the points closest to cluster centroids. For a
number of clusters slightly higher than the number of classes (10) the difference is close
to zero. The difference tend to be slightly lower when using SDAE to extract features.

and two layers, corruption level 0.1 and 0.2, and layer size 300 and 500) and
used the best performing model in all our experiments (SDAE with 2 layers, 0.2
corruption level, and 500 units per layer).

3.2 Finding Representative Samples

By using k-means as the clustering algorithm, we can use as the representative
sample from each cluster the data points closest to their centroids. We then
assign to all points in the same cluster the same label. This is equivalent to
classifying the dataset with a k-nearest neighbors algorithm using the cluster
centroids as the training examples (with k equals to one). This procedure leads
to results almost identical to assigning to each cluster the most frequent label
within it, as shown in Fig. 2. On MNIST dataset using just 10 clusters the
difference between the two procedures is in average less than 1%. Using more
than 15 clusters, this difference falls quickly to less than 0.005%.

3.3 Determining Classification Probability

Since the most central training example in a cluster obtained by k-means is a
good representative of the most frequent class in the cluster, we can presume that
the most central points have higher probabilities of being correctly classified,
while points farther from cluster centroids have lower probabilities. However
points which lay in-between clusters of the same class are likely to be correctly
classified, despite of being peripheral, because two neighbor clusters of the same
class suggest the existence of a bigger cluster in which both are contained.

We tested two models to evaluate the conditional probability of a point be-
longing to a class. Let d(z,p) be the euclidean distance from z to p and Cj the

Accuracy Variation due to Removal of Points Classified with Low Probability
1.0

0.

o
3

Accuracy
°
2

06— Model 1

Model 2 (k=1.0)
‘= Model 2 (k=1.5)
0.5 Model 2 (k=2.0)
« Model 2 (k=2.5)

Model 2 (k=10.0)

0.4
0

20 40 60 80 100
Proportion of the Dataset Kept (%)

Fig. 3. After classification, points were sorted accordingly to the difference between
the two highest probabilities. With both models we can obtain near 100% accuracy by
keeping about 40% of points classified with highest margin between first and second
guesses. Model 2 is worse than Model 1 for low values of K. For K = 10 both model
are almost equivalent.

set of cluster centroids from class k, we define the probability of point « belong-
ing to class j as the normalized inverse distance from z to the nearest neighbor
from class k, given by

(minyec, d(a@p))fl
Z (minpeci d(x’p))il

K2

p(jlz)=

or more simply . .
p(] ‘ IL’) _ Zi @lnpecri (xap)
mingec, d(z, p)

which accounts as evidence for a class just the distance of the single closest point
from the class. Our second model takes into consideration the sum of the inverse
distances to every point in the class. The probability is given by

(G |x) = Ypec, d@,p)"*
PO = S5 d(wp) K

i peC;

where K is a constant which regulates how quickly the influence of a point decays
with distance. For large values of K the influence of the nearest points tend to
dominate over the influence of more distant points, and this model when used
for ranking the best classifications gives similar results as the first, but with less
meaningful probabilities.

We can use these models to identify points classified with low probabilities.
This can be useful in the labeling process of a large dataset. It makes more sense
to spend the most resources labeling the “hard” cases instead of the easier ones.
Removing the excess of wrongly labeled points can also be useful in the next

Table 1. Error rate comparison (on MNIST test set)

Method 100 600 1000
Supervised Neural Network 25.13 11.21 9.84
Manifold Tangent Classifier [14] | 12.6 5.13 3.64
Semi-Supervised Embedding [19]|7.75 3.82 2.73

Pseudo-label [9] 10.49 4.01 3.46
AL + MLP 8.17 4.57 3.86
AL + ConvNet 7.98 3.73 3.32

step, when training a neural network. Wrong labels can degrade the performance
of a classifier. Fig. 3 shows how the accuracy varies accordingly to the proportion
of points removed. With high values of K the results of both models are almost
identical, for low values of k the first model is better. This difference occurs
because the cluster structures are not confined in convex regions in space. The
information of far points is not as meaningful as the information of closer points,
thus in general considering just the nearest neighbors is better.

3.4 K-means Initialization

The qualities of clusters found by k-means can vary significantly with the ini-
tialization scheme used. Initialization with k-means++-, which chooses as initial
centroids data points more evenly spread than by random initialization [1], re-
sults in average in higher accuracies (¢(58) = 3.66, p <= 0.001). There is a
modest negative correlation (r = —0.26, p < 0.001) between clustering accuracy
and the k-means distortion function (sum of squared distances from points to
cluster centroids to which they are assigned), given by

N
D e = e,
i=0

where N is the number of points and p, is the centroid of the cluster to which
x; belongs. Repeating the clustering step many times with k-means++ initial-
ization and selecting the run with the lowest distortion results in a significant
improvement in final accuracy.

4 Neural Network Training

We can improve further our results by using the labeled examples obtained so
far as train data of a supervised model. We trained two architectures of neu-
ral networks: Multilayer Perceptron (MLP) and Convolutional Neural Network
(ConvNet). In Table 1 we compare the error rate of our active learning strategy
(AL) with other semi-supervised models on MNIST test set when using 100, 600

and 1000 labeled examples. To represent the expected performance in a more
realistic setting, we ran the clustering step with 30 random initializations and
selected the model with the median accuracy to provide the labeled examples
used in the neural network training. We chose not to use an additional valida-
tion data, as before, for hyperparameters optimization and used instead 10000
samples from the training examples with the labels found in the previous step.
As a negative effect of adopting this validation set “contaminated” with wrong
labels, early stopping had its efficacy reduced. Even though, we achieved the
lowest error rates reported for 600 labeled examples. For the other values, our
results were just slightly worse than the results obtained by Semi-Supervised
Embedding.

We have observed that removing the excess of incorrectly labeled data, ex-
cluding the training examples classified with low probabilities has somewhat un-
predictable effects. Although the training data created this way has fewer wrong
labels, it also has less diversity. In general this procedure does not seem to im-
prove the final accuracy and in some cases the results are even worse, showing
that the diversity of the dataset can be as important as its size.

5 Related Work

One of the first attempts to explore the clustering structure in data for active
learning was made by Xu et al. [20], who employed k-means clustering to draw
representative samples from unlabeled examples which were used to speed up
the convergence of Support Vector Machines. Zhu et al [21] explored the man-
ifold structure in the data by modeling the probability distribution of points
belonging to classes as a Gaussian Random Field built on a graph whose nodes
are the training examples and the edges encode the distances between them.
Nguyen et al. [12] addressed some shortcomings of the two previous works by
taking measures to avoid repeatedly labeling samples in the same clusters. They
used the representative samples from clusters to train a discriminative classifier
to obtain the labels from the remaining unlabeled points (differently from our
work which uses a distance based classifier to propagate labels). The idea of
using stacked auto-encoders before clustering was explored by Lefakis et al. [10],
but this work focused in the use of under-complete representations and “regu-
lar” auto-encoders (without further regularization, such as noise), which usually
learns poorer features.

6 Conclusion and Future Work

In this work, we explored the use of unsupervised feature learning together with
clustering to build a simple and effective active learning strategy which shows
state-of-the-art performance on MNIST in the semi-supervised setting. Our re-
sults raises a series of questions to orient future investigations. Unsupervised
feature learning using only MNIST data is too limited. Humans learn from a lot
of unlabeled data before being able to recognize handwritten digits and more

complex objects. This idea of learning features from one kind o data and using
them in a different context has already been successful explored in the “self-
taught learning” setting [13] and we expect it to be useful in active learning
as well. It is also worth to explore other metrics and clustering algorithms. K-
means is intimately related to the euclidean distance, which could be possibly
replaced by better metrics for comparing objects in a feature space. We briefly
experimented some k-means variations, such as spherical k-means, [7] which is
based on the cosine similarity, but it seems to suffer from the same k-means and
euclidean space problems and did not lead to improvements.

References

10.

11.

12.

13.

14.

Arthur, D., Vassilvitskii, S.: k-means ++ : The Advantages of Careful Seeding.
In: Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete al-
gorithms. vol. 8, pp. 1027-1035 (2007)

. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and new

perspectives. Pattern Analysis and Machine Intelligence, IEEE Transactions on
35(8), 1798-1828 (2013)

Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of
deep networks. Advances in neural information processing systems 19(1), 153-160
(2007)

Cayton, L.: Algorithms for manifold learning. Univ. of California at San Diego
Tech. Rep pp. 1-17 (2005), http://www.vis.1bl.gov/~romano/mlgroup/papers/
manifold-learning.pdf

Dasgupta, S.: Two faces of active learning. Theoretical computer science 412(19),
1767-1781 (2011)

Dasgupta, S., Hsu, D.: Hierarchical sampling for active learning. In: Proceedings
of the 25th international conference on Machine learning. pp. 208-215 (2008)
Dhillon, I.S.: Concept Decompositions for Large Sparse Text Data using Clustering.
Machine Learning 42(1-2), 143-175 (2004)

Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural computation 18(7), 1527-1554 (2006)

Lee, D.H.: Pseudo-label: The simple and efficient semi-supervised learning method
for deep neural networks. In: Workshop on Challenges in Representation Learning,
ICML (2013)

Lefakis, L., Wiering, M.: Semi-Supervised Methods for Handwritten Character
Recognition using Active Learning. Proceedings of the BelgiumNetherlands Con-
ference on Artificial Intelligence pp. 205-212 (2007)

Martens, J.: Deep learning via Hessian-free optimization. In: Proceedings of the
27th International Conference on Machine Learning (ICML-10). pp. 735-742 (2010)
Nguyen, H.T., Smeulders, A.: Active learning using pre-clustering. In: Proceedings
of the twenty-first international conference on Machine learning. p. 79. ACM (2004)
Raina, R., Battle, A., Lee, H., Packer, B., Ng, A.Y.: Self-taught learning: transfer
learning from unlabeled data. In: Proceedings of the 24th international conference
on Machine learning. pp. 759-766. ACM (2007)

Rifai, S., Dauphin, Y.N.,; Vincent, P., Bengio, Y., Muller, X.: The manifold tangent
classifier. In: Advances in Neural Information Processing Systems. pp. 22942302
(2011)

10

15.

16.

17.

18.

19.

20.

21.

Selfridge, O.G.: Pandemonium: A paradigm for learning. In: Proceedings of the
Symposium on Mechanisation of Thought Processes. vol. 1, pp. 511-529. HMSO
(1959)

Vincent, P., Larochelle, H., Bengio, Y., Manzagol, P.A.: Extracting and composing
robust features with denoising autoencoders. In: Proceedings of the 25th interna-
tional conference on Machine learning. pp. 1096-1103. ACM (2008)

Vincent, P., Larochelle, H., Lajoie, 1., Bengio, Y., Manzagol, P.A.: Stacked de-
noising autoencoders: Learning useful representations in a deep network with a
local denoising criterion. The Journal of Machine Learning Research 11, 3371-3408
(2010)

Weston, J., Leslie, C., Ie, E., Zhou, D., Elisseeff, A., Noble, W.S.: Semi-supervised
protein classification using cluster kernels. Bioinformatics (Oxford, England)
21(15), 3241-7 (Aug 2005)

Weston, J., Ratle, F., Mobahi, H., Collobert, R.: Deep learning via semi-supervised
embedding. In: Neural Networks: Tricks of the Trade, pp. 639-655. Springer (2012)
Xu, Z., Yu, K., Tresp, V., Xu, X.W., Wang, J.: Representative Sampling for Text
Classification Using Support Vector Machines. Springer Berlin Heidelberg (2003)
Zhu, X., Ghahramani, Z., Lafferty, J., et al.: Semi-supervised learning using gaus-
sian fields and harmonic functions. In: ICML. vol. 3, pp. 912-919 (2003)

