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Abstract. This paper presents an unsupervised multi-modal learning
system that learns associative representation from two input modalities,
or channels, such that input on one channel will correctly generate the
associated response at the other and vice versa. In this way, the sys-
tem develops a kind of supervised classification model meant to simulate
aspects of human associative memory. The system uses a deep learn-
ing architecture (DLA) composed of two input/output channels formed
from stacked Restricted Boltzmann Machines (RBM) and an associative
memory network that combines the two channels. The DLA is trained on
pairs of MNIST handwritten digit images to develop hierarchical features
and associative representations that are able to reconstruct one image
given its paired-associate. Experiments show that the multi-modal learn-
ing system generates models that are as accurate as back-propagation
networks but with the advantage of a bi-directional network and unsu-
pervised learning from either paired or non-paired training examples.

1 Introduction

Humans learn knowledge from the environment by data that is provided in sev-
eral forms, or modalities, such as audio and visual signals. Psychologists define
multi-modal learning as learning new knowledge from multiple sensory modali-
ties [11]. Researchers have shown that people’s understanding of new concepts is
enhanced with mixed-modality knowledge representations [10]. The human brain
has adapted to fuse associated sensory signals so as to learn more effectively and
efficiently. The long-term goal of this research is to develop a learning system
that simulates aspects of the multi-modal learning ability of humans. In par-
ticular, we investigate unsupervised learning methods that can create a model
capable of generalization and classification from one input or output modality
to another (eg. from visual to verbal). We are interested in how this can be done
without resorting to any form of supervised learning that suffers from the need
for labeled examples.

Deep learning is a sub-area of machine learning, which typically uses Re-
stricted Boltzmann Machines (RBM), a type of stochastic associative artificial
neural network (ANN), to develop a multi-layer generative models [6]. Deep
learning architectures, or DLA, provide an exciting new substrate upon which
to explore new computational and representational models of how knowledge
can be acquired, consolidated and used [1]. Prior work has investigated the use



of DLAs and unsupervised learning methods to develop models for a variety of
purposes including auto-associative memory, pattern completion, and clustering
as well as generalization and classification [8].

This paper takes a first step toward developing a multi-modal learning system
by examining a DLA that is capable of learning paired-associate images at two
input modalities (channels). The DLA must reconstruct the matching image
at channel A when it observes it’s paired image at channel B, and vice versa.
By doing so the system uses unsupervised learning to develop an associative
memory model that performs a form of classification from one channel to another.
Additionally, this DLA can learn not only paired-associate examples, but also
non-paired independent examples at each sensory modality. Experimentation
shows quantitatively and qualitatively that the system generates models that
accurately generates associated images as compared to models developed using
traditional supervised back-propagation networks.

2 Background

Artificial neural networks (ANN) are widely used to solve classification problems
such as image and speech recognition, however many do not work in the same
fashion as the human nervous system. For example, back-propagation ANNs are
good for modeling complex mapping relations between input and output data,
but are not as good for reconstructing, or recalling a pattern. Humans have the
ability to recover complete information from partial information; this is referred
to as associative memory [4]. When a child watches a tennis game, he or she
learns the appearance of the tennis ball and the racket. Next time when the
child sees a picture of a tennis ball, the child may recall an image of a racket and
of the game. Associations are clearly a major part of learning about the world.

Associative ANNs are inspired by cognitive psychology and are designed to
mimic the way that collections of biological neurons may store and recall asso-
ciative memories [12]. Geoffrey Hinton, University of Toronto, advocates using
Boltzmann Machine associative networks to simulating human brain structure.
After a Boltzmann Machine has been trained on a set of patterns, it has the
ability to reconstruct any one of those patterns from a partial or noisy pattern.
However, learning is slow in large Boltzmann Machines because of the many
weights in a fully connected network and the iterative sampling of node activi-
ties required for each weight update.

2.1 Restricted Boltzmann Machine

A Restricted Boltzmann Machine (RBM) is a variant of a BM that is meant to
overcome long training times by limiting the number of connections in its network
and using a modified learning algorithm. RBMs have both visible and hidden
layers of neurons just like BMs, however there are no intra-layer connections, so
they can be characterized as a bipartite graph (see Figure 1) [8]. When settling to
equilibrium, neuron hj turns on with the probability pj = 1
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Fig. 1. RBM Training Process Fig. 2. Stacking Multi-level RBMs

and neuron vi turns on with the probability pi = 1
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vi, hj of neuron i and j keep changing with probabilities pi and pj . The system
computes the activation energy E = −
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bi and bj are the bias terms for their respective nodes [9]. The global energy E
will be reduced more quickly in an RBM compared to a BM because of the
reduced number of connections. The goal of training is to modify the weights of
the network to establish low energy states that correspond with training patterns
at the visible nodes. Similar input patterns will have energy states closer to each
other, whereas two orthogonal patterns (e.g. patterns that share few common
pixels) will have energy states more distant from each other.

The method of weight update we use for this research is called Contrastive
Divergence, or CD [8]. The weights of the network are initialized to small random
values. When training data xi is given to the visible neuron vi, the RBM clamps
the states of visible neurons and frees the states of hidden binary neuron hj (see
Figure 1). Each weight wij of the RBM is updated as per the following formula
∆wij = η(< vihj >

0 − < vihj >
1), where η is the learning rate, < vihj > is

the expectation over all possible pairs of visible and hidden node values, and
the 0 and 1 superscripts indicate the expectation based on the training example
and its reconstruction, respectively. This equation approximates the gradient of
the log probability of a training example with respect to a weight. Weight wij

is updated until the global energy E (for all training examples) reduces below a
threshold. With probability pi, neuron i will then reconstruct the input data xi.

To test its ability to recall a pattern, the RBM is presented with all or some of
the inputs xi of a test example at its visible units vi. These cause activations at
each of the hidden units hj as described above, and then the visible units are freed
to generate new activations. If training has been successful, the reconstructed
outputs at vi are close to the complete pattern of the original test example.

2.2 Deep Learning Architectures

Humans tend to organize ideas and concepts hierarchically [5]. Abstract concepts
are learned and recalled through the composition of simpler concepts [1]. This
approach makes sense in a world where most objects are made from parts which



Fig. 3. Multi-modal data learning system Fig. 4. Two channels DLA

are in turn composed of smaller features. For instance, a car is a combination of
smaller parts like wheels and a frame. And a wheel is made up of smaller features
like a tire and a rim. Neuroscience studies have confirmed that this compositional
structure can be seen in the human nervous system. A mainstream theory is that
the mammalian brain uses a deep learning architecture with multiple levels of
abstraction corresponding to different areas of the neocortex [14].

Deep learning architectures, or DLA, is a sub-area of machine learning that
places heavy emphasis on hierarchical composition and unsupervised learning
methods. Deep Belief DLAs can be developed by stacking layers of RBMs one
on top of another [8]. They have been successfully used to develop models for
recognizing hand-writing images of digits in a manner that simulates the human
visual cortex [6]. RBM-based DLA systems are capable of doing unsupervised
clustering of unlabeled data based on a hierarchy of features. As shown in Fig-
ure 2, the hidden layer of one RBM can be used as the input layer for a higher
level RBM [1]. The highest level features can be used to achieve classification,
if so desired. Subsequently, researchers feel that DLAs develop a hierarchy of
features in a fashion similar to the mammalian brain.

Deep Belief DLAs present a new way at looking at systems that learn. RBM
DLAs can be used as an auto-encoder to model high-dimensional data, such as
images and audio [3]. Bengio reports that deep architectures are more expres-
sive than shallow ones by analyzing the depth-breadth trade-off of architecture
representation [2]. Perhaps most importantly, Deep Belief DLAs learn represen-
tative hierarchies directly from the data [1]. This is in contrast to alternative
approaches, also considered DLAs, such as convolutional networks that use re-
ceptive fields and modified back-propagation methods that rely heavily on known
topological characteristics of the input space [13].

3 Multi-modal Learning Using an Unsupervised DLA

The objective of this research is to develop a learning system that can memorize
and recall multi-channel data using an associative memory network. The learning



system should be able to recall the pattern from the associative network on one
sensory modality given data on another sensory modality. The long-term goal
of our research is to create a system that can learn concepts using two or more
sensory/motor modalities, such as audio, optical, and vocal (see Figure 3).

3.1 Learning Paired-Associate Images

Consider the problem of learning paired-associate images at two input modalities
(channels). We propose to use a DLA network that, after training, will be able
to generate a paired image on one channel when prompted with an image on
another channel. The process is meant to simulate human sensory modalities
and associative memory, and to provide insights into how classification can be
done using an unsupervised learning approach. The learning system is composed
of two major parts, a associative memory network and two associative sensory
channel networks (see Figure 4). The sensory channel networks are designed
for the recognition and reconstruction of sensory data. The associative memory
network ties the sensory channel networks together and simulates the human
associative memory. Both parts can be built using RBMs.

Because of its reduced representation, the recall capacity of an RBM is not
as high as a fully-connected BM. We have determined for our learning problem
that an RBM is unable to recall patterns when only half of the visible neurons
are given correct pattern values [16] unless it contains a large amount of neurons
in the hidden layer. Thus when an RBM is used as the top associative memory
network, additional steps are required after the CD algorithm has completed
training. As per Hinton, the weights of the network require fine tuning [6].

To produce appropriate features at the top layer, the weights of the RBM
model need to be fine-tuned after being trained. However, fine-tuning the bi-
directional weights of the RBM may destroy their ability to generate lower level
features. To protect the accuracy of the generative model, it is necessary to untie
the weights between the top layer of each channel and the associative memory
network layer and create two sets of weights - recognition weights and generative
weights (see Figure 5) [7,8]. The recognition weights are used in the bottom-up
pass which receives an input pattern and the generative weights are used in
the top-down pass to reconstruct an output pattern. The generative weights
are left as trained by the RBM. The recognition weights are fine-tuned using a
back-fitting algorithm, such that the associative memory network can generate
a relatively accurate full set of associative memory features with only input from
one channel.

Following RBM training, to fine-tune channel 1, the recognition weights wij ,
where i is a neuron in hidden layer 2 and j is a neuron in hidden layer 3, are
used as the initial weight values for a gradient descent regression over all paired
patterns. For each training pattern, the posterior probabilities {pi} of hidden
layer 2 are used as the input attribute, and the posterior probabilities {pj} of
hidden layer 3 are used as the target output. A new set of posterior probabilities
{p′j} for hidden layer 3 are computed using p′j = 1

1+exp(−
∑

i
wijpi)

, and the

weights are updated using gradient descent to minimize the error between {pj}



Fig. 5. Untieing the weights Fig. 6. BP ANN
in Experiment 1

and {p′j}. In this way the recognition weights which pass the input signal from
sensory channel 1 to the associative memory network are fine-tuned to generate
a full set of associative memory features which channel 2 can use to generate the
appropriate output.

With local back-fitting, the multi-modal DLA should be able to achieve the
learning accuracy that was previously achieved with back-propagation super-
vised learning by Srivastava [15]. Without supervised learning from h2 to h2′
through h3, the performance of the DLA is unlikely to exceed that of a tradi-
tional BP ANN approach; however, we do expect it to do as well. The hierarchical
feature learning of the sensory channels and the local back-fitting of the recog-
nition weights between two layers means that our method can be used between
two layers by a system that has more than two channels. This is not true of
the supervised back-propagation approach because a separate set of recognition
weights would be needed for each combination of input-output modalities.

3.2 Impact of Learning Non-paired Patterns

Sensory data does not always come in pairs in real life. For example, one can
see a cat meowing, see an image of a cat, or hear meowing without seeing a cat.
In this case, the sound “meow” is the audio signal and the image of the cat is
the visual signal. These two sensory channels can come together to allow paired-
associate learning, but their individual channel representations can be learned
and improved upon separately. We propose that learning each sensory modality
with non-paired examples will help to improve the associative memories ability
to generate the correct image on one channel when given its paired-associate on
the other. It would be informative to have an experiment to test the impact on
the multi-channel learning system by separately training the sensory channels
with non-paired examples.



4 Empirical Studies

Three empirical studies were carried out using two different data sets. The first
and third experiments used paired images from the MNIST dataset of handwrit-
ten numeric digits. The second experiment used paired images from a synthetic
dataset of numeric digits. In all experiments, five pairs of odd and even digits
were associated with each: 1-2, 3-4, 5-6, 7-8, 9-0.

4.1 Experiment 1

Objective: The objective of this experiment is to compare the unsupervised
DLA with a supervised BP ANN approach to learning paired-associate images.
Each learning system is trained such that when a handwritten digit image is
provided, the system will generate its paired digit image.

Material and Methods: This experiment uses a dataset of paired MNIST
handwritten digits as the learning domain. The experiment is repeated four times
with different training sets, validation sets and test sets. Each of these datasets
contains 1,000 paired-associate examples that are randomly selected from the
MNIST dataset.

A deep learning architecture of RBMs is used to develop an unsupervised
learning model for the problem. The architecture is in accord with Figure 4.
Each channel network is composed of two RBM layers, each of which contains 500
hidden neurons. Hidden layers 1 and 1’ and then layers 2 and 2’ will develop more
abstract features of the original images [8]. The associative top layer contains
1,000 neurons. The unsupervised DLA uses back-fitting to fine-tune the weights
of the associative top layer after the CD algorithm training is finished.

When training the DLAs, the training process of each sensory channel stops
when the maximum iteration of 60 is reached, and the associative memory net-
work is trained to 100 iterations. Validation sets are used to monitor the back-
fitting to avoid over-fitting. The odd digit part of a test example is used to test
the reconstruction of its corresponding even digit image, and vice versa.

We developed two BP networks to learn the same paired-associate mapping.
One network is trained to map odd digit images to even digits, the other vice
versa. Both BP networks use the architecture shown in Figure 6. The BP net-
works use the same training set, validation set and testing set as the DLA.
The validation set is used to prevent the BP algorithm from over-fitting to the
training set.

The accuracy of reconstruction is measured by testing the output images
using Hinton’s DLA handwritten digits classification software as an Oracle. This
software is known to classify MNIST dataset of handwritten digits with only
1.15% errors [8]. One can pass the input images and the reconstructed images
through Hinton’s classifier to determine their digit category. The accuracy of
the models is then based on the number of correctly paired images.

Results and Discussion: Using Hinton’s software, the reconstruction ac-
curacy was checked on the testing set. The average results of four replications of
the experiments are shown in Table 1. On average, the unsupervised DLA (model



1→2 2→1 3→4 4→3 5→6 6→5 7→8 8→7 9→0 0→9 Avg
DLA 95.25 95.88 82.63 94.63 92.38 88.75 90.5 79.75 91.63 93 90.74

BP ANNs 98.0 72.5 83.75 95.13 90.38 82.88 91.13 82.88 89.0 92.5 88.82

Table 1. Accuracy of test set reconstruction (%)

Fig. 7. Examples of reconstruction results with the DLA and BP ANNs

1) generated images that were 90.74% accurate, and the BP ANNs (model 2)
generated images that were 88.82% accurate. One can see that the two models
did equally well. This suggests that the unsupervised DLA models are able to
achieve the same level of accuracy as the supervised BP approach.

Figure 7 shows examples of reconstructed images produced by the DLAs
and the BP ANNs. One can see that the images generated by the DLAs are
clearer than those generated by the BP ANNs. We suspect this because the
DLA models are able to better differentiate features from noise. This will be
investigated further in the next experiment.

4.2 Experiment 2

Objective: The objective of this experiment is to develop auto-associative mod-
els that can overcome noise injected into synthetic training examples. An unsu-
pervised DLA with back-fitting and supervised BP ANNs will be developed from
a noisy dataset, and the quality of their regenerated images will be compared.

Material and Methods: This experiment uses a synthetic dataset that
contains five different sets of 10 x 5 paired images from Figure 8. 10% random
noise was added to each template image to produce 60 instances of each category,
or 300 in total. The first 100 of these images are used as a training set, the next
100 are used as a validation set, while the remaining 100 are used as a test set.

Fig. 8. Templates of the synthetic dataset

A DLA architecture, in accord with the previous experiment, is used to de-
velop an unsupervised learning model. Each of the sensory channel layers con-



1→2 2→1 3→4 4→3 5→6 6→5 7→8 8→7 9→0 0→9 Avg
DLA 0.012 0.071 0.046 0.029 0.004 0.01 0.008 0.0 0.04 0.015 0.032

BP ANNs 0.162 0.216 0.209 0.081 0.06 0.115 0.135 0.165 0.11 0.106 0.144

Table 2. RMSE of test set reconstruction (out of 1)

Fig. 9. Examples of reconstruction results with DLA and BP ANNs

tains 50 hidden neurons, and the associative top layer contains 100 neurons. The
training process of the sensory channel networks stops when the maximum iter-
ation of 60 is reached; the associative memory network trains for 100 iterations.

As in Experiment 1, two BP networks were developed to learn the same
paired-associate mapping. Both BP networks used an architecture similar to
that shown in Figure 6 with 50 neurons in layers 1 and 3 and 100 neurons in
layer 2. The BP networks uses the same training set, validation set and test set
as the DLA.

The accuracy of reconstruction was measured by comparing the similarity
between the generated images and their corresponding template images for a set
of test examples. The template images represent the common features across all
input images. The DLA learns features from the training set, that is, it learns
the template images during training. Hence the more similarities a generated
image and its corresponding template image share, the better the DLA learned
to regenerate this image. The RMSE between the pixels of each reconstructed
image and its corresponding template (without noise) was computed to give an
average error over all examples (image pixels are normalized to the range [0,1]).

Results and Discussion: The RMSE of the reconstructed images for the
test set is shown in Table 2. The DLA with back-fitting out-performs the BP
networks in generating the images in the presence of noise. Figure 9 shows ex-
amples of reconstructed images from the DLA and the BP ANNs. The generated
images from the DLA are quite similar to the template images of Figure 8, while
there is significant noise on the generated images from the BP network. DLAs
attempt to probabilistically differentiate features from noises, whereas BP ANNs
attempt to map input pixels to output pixels. Features are formed in BP net-
works, but they are for the purpose of mapping and not reconstruction of the
original images. Hence a DLA is a better choice if the objective is to construct
a noiseless category example as a form of classification.



Fig. 10. The number of exam-
ples used to train four models

Fig. 11. Accuracy comparison between four models

4.3 Experiment 3

Objective: The preceeding experiments used paired-associate examples to de-
velop neural network models, however, sensory data does not always come in
pairs in real life. The objective of this experiment, in accord with Section 3.2, is
to develop an associative learning system with both paired associative examples
and independent non-paired examples. The experiment is designed to test if the
performance of an associative learning system can be improved by separately
training the sensory channels with non-paired examples.

Material and Methods: This experiment uses the database of MNIST ex-
amples as in Experiment 1. The experiment is repeated four times with different
training sets, validation sets and test sets. For each repetition, four models are
built using the same architecture but with different amounts of training exam-
ples. The first model is built with 100 paired-associate examples. The second
model is built with 100 paired-associate examples, and 100 non-paired examples
of even digit images. The third model is built with 100 paired-associate exam-
ples, 100 non-paired examples of even digit images, and 100 non-paired examples
of odd digit images. The last model is built with 200 paired-associate examples.
Figure 10 shows the number of paired and non-paired examples in each training
set. All the odd digits images are used to train the odd channel and all the even
digits are used to train the even channel, but only the paired-associate examples
are used to develop the associative memory.

The four models use the same 3-layered architecture, parameters, validation
sets and test sets as in Experiment 1. While doing back-fitting, validation sets
are used to monitor overfitting. Test sets are used to examine the associative
learning performance of the learning system. The odd digits are used to test
the recall of even digits, and vice versa. The recalled images are classified by
Hinton’s classifier to examine the accuracy of the models.

Results and Discussion: The performance (averaged over four repetitions)
of the four models at recalling even digits from odd digits, odd digits from even



digits, and the average of them are shown in Figure 11; the error bars repre-
sent the 95% confidence over the repeated studies. The mean accuracy increases
marginally (the error bars show that the improvements are not significant) from
model 1 to model 3, which means that using non-paired examples to better de-
velop one of the channels representation may improve the overall performance
of an associative learning system. We conjecture that this is because both the
recognition weights and the generative weights of this channel are optimized. Im-
proving the recognition weight performance of the odd digits channel will provide
better features to the associative memory network to generate the corresponding
even digits. Better generative weights for the odd digits channel will generate
more accurate odd digits when even digits are provided. In general, this result
suggests that improving one of the sensory channel networks of a multi-channel
learning system which contains more than two channels will improve any recall
that involves that channel.

It is also important to note that the reconstruction accuracy clearly increases
from model 3 to model 4. This demonstrates that using more paired-associate ex-
amples to develop the associative memory network can improve the performance
of the system over the equivalent number of non-paired examples. In a system
with three or more channels we conjecture that paired-associate examples for
any two channels will be of benefit to the entire associative memory network.

5 Conclusion

This paper presents recent work on an unsupervised multi-modal learning sys-
tem that can develop an associative memory structure that combines two in-
put/output channels. Our long-term goal is to develop learning systems that
are able to learn conceptual representations from multiple sensory input and/or
motor output modalities in a manner similar to humans.

We have demonstrated an unsupervised deep learning architecture (DLA)
that can reconstruct an image of a MNIST handwritten digit from another paired
handwritten digit. The system develops a kind of supervised classification model
meant to simulate aspects of human associative memory. The DLA is formed
with stacked Restricted Boltzmann Machines (RBM) and trained with the Con-
trastive Divergence (CD) algorithm. The RBM associative memory network that
ties the input/output channels together requires refinement using a back-fitting
technique to increase the recall accuracy when only 50% of its visible neurons
are available from one channel. Experimentation shows quantitatively (using an
independent classification method) and qualitatively (by viewing the generated
images) that the system develops models that are able to reconstruct accurate
paired images as compared to supervised back-propagation network models and
have the advantage of unsupervised learning from either paired or non-paired
training examples.

In future work, different types of sensory data will be used to train the multi-
modal learning system, such as audio signals. Furthermore, we are interested in
knowledge transfer in DLAs using unsupervised methods for learning new tasks
and new modalities.
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