(U//FOUO)

(U) Experience with Compression-Based Distance

Metrics for Malware

Charles Nicholas!? Kevin Stout?

! Department of Computer Science and Electrical Engineering, UMBC

?Department of Defense '_\- @
\c\m% oJ

August 2012

The overall classification of this presentation is:

UNCLASSIFIED//FOR OFFICIAL
USE ONLY

(U//FOUO)

Normalized Compression Distance

How can we tell if we have seen some piece of malware before?

Normalized Compression Distance was introduced by Li et al in
2004 [1]
If c(x) is the length of object a when compressed, then

_ c(xy) — min(c(x), c(y))
NCD(x,y) = max(c(x), c(y))

Intuition: similar objects will share substrings, and thereby " help each
other” during compression

(U//FOUO)

Properties of NCD

e A distance metric d satisfies three properties: for any three objects
X2
o Reflexivity: d(x,x) =10
e Symmetry: d(x,y) = d(y, x)
o Triangularity: d(x,y) +d(y.z) >= d(x, z)
@ NCD satisfies these in theory, but not in practice, due to overhead
imposed by compression algorithms. (We used the xz option in R's
memCompress function [2].)

e Example: DLL files from a Windows/System32 directory.

(u//FOUD)

NCD(x,x) over 1405 DLL files

0.04 0.05

0.03

NCD{x.x) for DLL files.

0.02

/] 200 400 600 800 1000 1200 1400

over DLL files, sorted by name

Figure: (U) DLL files are represented in alphabetical order on the X axis. Note
the least-squares fit line, and the clusters.

it (UMBC and DOD) u//FOUQ August 2012

(u//FOUD)

NCD(x,x) over 1405 DLL files

g4 . °
b4
s 8 e o
o
o oo
-3 [o
z 3 e
g: } OOD
o
BDUD:F o L4
D00 O 0% o o °
d o % 8 oo
2 &, 8 o° °
-]
oo o -1
o aeug&,‘ ® 3
s &n ® is ® 0 o o
2 g ome. o
°n§ o o
o
8]
= T T T T T T T
(] 200 400 600 800 000 1200 400

Figure: (U) NCD as a function of file length. The longer the file x, the closer
NCD(x, x) is to zero.

(u//FOUO)

More About NCD

e For most x, NCD(x, x) = 0 is almost but not exactly true.
e For most x,y, NCD(x,y) = NCD(y, x) is almost but not exactly true.

@ The triangle inequality holds, in part because of the compression
overhead.

e NCD is useful for comparing binaries, but computing NCD requires us
to create some (possibly big) objects only to measure their length
when compressed, and compression is relatively slow: O(n log n) .

(u//FOUO)

Similarity of 63 files

10

05 06 07 08 09

04

Normalized Compressed Distance

03

ad
hclust (", "complete”)

Figure: (U) We can use NCD to compare binaries, and performance is reasonable
for small sets.

(u//FOU0)

xz compression, over-simplified

e R's xz compression function implements Lempel-Ziv compression by
finding strings in an object that occur more than once, and replacing
them with shorter strings [3]

e The dictionary of strings and their shorter "stand-ins" is attached to
the compressed file, which imposes some necessary overhead

@ Such a compression dictionary can be created without doing any
compression, in O(n log n) time.

(U//FOUD)

The dzd similarity metric

Substrings that occur in both files will also appear in both
compression dictionaries

Let d(x) be the set of dictionary entries generated when x is
compressed, and measure the overlap between the compression
dictionaries, as Jaccard might suggest:

[d(x) N d(y)|

dzd(x,y) =1-— ld(x)ud(y)|

The range of dzd is [0,1]

Reflexive, Symmetry and Triangularity properties follow from
elementary set theory

d Stout (UMBC and DOD) U/ /FOUO August 2012

(u//FOUO)

dzd is easy to implement

e A given object’'s compression dictionary can be built once, sorted,
saved, and used in subsequent calculations. (About 30 lines of Perl.)

@ Since R has suitable built-in set operations, and having stored the
compression dictionaries, we can compute dzd in O(n) time, vs.
O(n log n) for NCD.

@ No need to build a global set of terms, as would be necessary with
(for example) the vector space model.

(u//FOUO)

The dzdW similarity metric

e The compression dictionaries also have string frequencies, that is, how
many times was a given string "emitted”?

e Intuition: if objects x and y share many strings that occur a lot, that
tells us more than if they share strings that occur only rarely.

e Compute normalized frequencies of strings in a document, and add up
the products of matching string frequencies

dzdW(x,y) = Z Beg Eifo
J

where f, ; is the normalized frequency of term j in document x

e Again, the distance metric properties hold

cholas and Stout (UMBC and DOD) u//FOUO August 2012

(U//FOUD)

Using dzd and dzdW in a Malware Collection

e We have a private collection of many thousands of malware objects,
of various kinds

e Executable binaries are of particular interest, so we built compression
dictionaries for those

e We then compared NCD(x, y) with dzd(x, y) for 1,000 random pairs
of executable binaries

e NCD took 505 seconds to do those comparisons, versus 195 seconds
for dzd

(U//FOUO)

@
o

NCDvals "
[|
|
| u
B3 [7oag
e] 3| *ELTN
: dzdvals
3
L - .
L) & ; -
f;" “"gf dzdWvals [3
1 iy ¥
¢ A ‘,l‘ <

B
gl
B

Figure: (U) Comparing NCD(x, y), dzd(x,y) and dzdW/(x, y) for 1,000 random
pairs of "malware” files.

(U//FOUO)

When Malware Files are Similar

e NCD, dzd, and dzdW have different distributions, hence different
critical values. For example, the "1%" critical value of dzd is 0.57,
versus 0.85 for NCD

e We noticed a pair of files x, y with dzd(x, y) = 0.60 which happens
by chance less than 5% of the time. These two executables had little
in common except for a particular form of obfuscation.

(u//FOUQ)

Conclusions and Future Work

We have proposed and implemented versatile distance metrics for files
called dzd and dzdW

dzd and dzdW seem consistent with NCD, but seem faster (after
one-time pre-processing)

Qur effort to use these metrics to cluster malware continues.
POC: Charles Nicholas nicholas@umbc. edu

1s and Stout (UMBC and DOD)

(u//FOU0)

References

@ Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M. B. Vitanyi.
The similarity metric.
IEEE Transactions on Information Theory, 50(12):3250-3264,
December 2004

[R Development Core Team.
R: A Language and Environment for Statistical Computing.
R Foundation for Statistical Computing, Vienna, Austria, 2011.
ISBN 3-900051-07-0.

[Terry Welch.
A technique for high-performance data compression.
IEEE Computer, 17(6):8-19, June 1984.

uU//FOUO

