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Abstract

We present a new algorithm for solving an eigenvalue problem for a real symmet-
ric matrix which is a rank-one modification of a diagonal matrix. The algorithm
computes each eigenvalue and all components of the corresponding eigenvector
with high relative accuracy in O(n) operations. The algorithm is based on a
shift-and-invert approach. Only a single element of the inverse of the shifted
matrix eventually needs to be computed with double the working precision.
Each eigenvalue and the corresponding eigenvector can be computed separately,
which makes the algorithm adaptable for parallel computing. Our results ex-
tend to the complex Hermitian case. The algorithm is similar to the algorithm
for solving the eigenvalue problem for real symmetric arrowhead matrices from:
N. Jakovčević Stor, I. Slapničar and J. L. Barlow, Accurate eigenvalue decompo-
sition of real symmetric arrowhead matrices and applications, Lin. Alg. Appl.,
464 (2015).
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1. Introduction and Preliminaries

In this paper we consider the eigenvalue problem for an n×n real symmetric
matrix A of the form

A = D + ρzzT , (1)
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where
D = diag(d1, d2, . . . , dn)

is a diagonal matrix of order n,

z =
[
ζ1 ζ2 · · · ζn

]T

is a vector and ρ 6= 0 is a scalar. Notice that A is a rank-one modification of
a diagonal matrix. Subsequently, we shall refer to such matrices as “diagonal-
plus-rank-one” (DPR1) matrices. DPR1 matrices arise, for example, in solv-
ing symmetric real tridiagonal eigenvalue problems with the divide-and-conquer
method [6], [9], [13], [26, Sections 3.2.1 and 3.2.2], [27, Section III.10].

Without loss of generality, we make the following assumptions:

- ρ > 0 (otherwise we consider the matrix A = −D − ρzzT ),

- A is irreducible, that is, ζi 6= 0, i = 1, . . . , n, and di 6= dj , for all i 6=
j, i, j = 1, . . . , n, and

- the diagonal elements of D are decreasingly ordered,

d1 > d2 > · · · > dn. (2)

Indeed, if ζi = 0 for some i, then the diagonal element di is an eigenvalue whose
corresponding eigenvector is the i-th unit vector, and if di = dj , then di is an
eigenvalue of the matrix A (we can reduce the size of the problem by annihilating
ζj with a Givens rotation in the (i, j)-plane). Ordering of the diagonal elements
of D is attained by symmetric row and column pivoting.

Let
A = V ΛV T

be the eigenvalue decomposition of A, where

Λ = diag(λ1, λ2, . . . , λn)

is a diagonal matrix whose diagonal elements are the eigenvalues of A, and

V =
[
v1 · · · vn

]

is an orthonormal matrix whose columns are the corresponding eigenvectors.
The eigenvalue problem for a DPR1 matrix A can be solved by any of

the standard methods for the symmetric eigenvalue problem (see, for example
[28, 25]). However, because of the special structure of diagonal-plus-rank-one
matrices, we can use the following approach. The eigenvalues of A are the zeros
of the secular function (see, for example, [6] and [11, Section 8.5.3]):

f(λ) = 1 + ρ
n∑

i=1

ζ2i
di − λ

= 1 + ρzT (D − λI)−1z, (3)
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and the corresponding eigenvectors are given by

vi =
xi

‖xi‖2
, xi = (D − λiI)

−1z, i = 1, . . . , n. (4)

Diagonal elements of the matrix D, di, are called poles of the function f . It is
easy to see that, for ρ > 0, f is strictly increasing between the poles, implying
the strict interlacing property

λ1 > d1 > λ2 > d2 > · · · > λn > dn. (5)

The formulae (3) and (4) are simple, and have been used to solve similar
eigenvalue problems [2, 5, 6, 9]. but maintaining orthogonality among the eigen-
vectors vi requires all of the eigenvalues λi to be computed with high accuracy
[13]. In other words, if the computed eigenvalues are not accurate enough, then
the computed eigenvectors may not be sufficiently orthogonal (see Example 3).
The existing algorithms for DPR1 matrices [6, 9, 13] obtain orthogonal eigen-
vectors with the following procedure:

- compute the eigenvalues λ̃i of A by solving (3),

- construct a new matrix
Ã = D + ρz̃z̃T

by solving an inverse problem with the prescribed eigenvalues,

- compute the eigenvectors of Ã by (4) but using z̃ instead of z.

The eigenvectors computed by this algorithm are orthogonal to machine preci-
sion (for details see [13, 6, 9, 2]). This results in an algorithm which requires
only O(n2) computations and O(n) storage for eigenvalues and O(n) storage for
each eigenvector. This algorithm is implemented in the LAPACK subroutine
DLAED9 and its subroutines [1].

Our algorithm uses a different approach and is forward stable, that is, it
computes all eigenvalues and all individual components of the corresponding
eigenvectors of a given arrowheadmatrix of floating-point numbers to almost full
accuracy, a feature which no other method has. The accuracy of the eigenvectors
and their numerical orthogonality follows from the high relative accuracy of the
computed eigenvalues. Each eigenvalue and the corresponding eigenvector is
computed independently of the others in O(n) operations, making our algorithm
suitable for parallel computing.

The algorithm is based on a shift-and-invert technique. Basically, an eigen-
value λ is computed from the largest or the smallest eigenvalue of the inverse of
the matrix shifted to the pole di which is nearest to λ, that is,

λ =
1

ν
+ di, (6)

where ν is either largest or smallest eigenvalue of the matrix

A−1
i ≡ (A− diI)

−1.
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The algorithm and its error analysis are similar to the algorithm for arrow-
head matrices from [17], thus, the present paper can be viewed as a note related
to [17].

The organization of the paper is the following. In Section 2, we describe our
algorithm named dpr1eig and give error bounds. We also discuss fast secular
equation solvers and three implementations of the double the working precision.
In Section 3, we illustrate our algorithm with few examples.

2. The algorithm

Let A be an irreducible DPR1 matrix of the form (1), with the diagonal
elements of D ordered as in (2), and ρ > 0. Let λ be an eigenvalue of A, let v
be its eigenvector, and let x be the unnormalized version of v from (4). Let di
be a pole which is closest to λ. Clearly, from (5) it follows that either λ = λi or
λ = λi+1. Let Ai be the shifted matrix

Ai = A− diI =




D1 0 0
0 0 0
0 0 D2


+ ρ



z1
ζi
z2


 [

zT1 ζi zT2
]
,

where

D1 = diag(d1 − di, . . . , di−1 − di),

D2 = diag(di+1 − di, . . . , dn − di),

z1 =
[
ζ1 ζ2 · · · ζi−1

]T
,

z2 =
[
ζi+1 ζi+2 · · · ζn

]T
.

Notice that D1 (D2) is positive (negative) definite.
Obviously, λ is an eigenvalue of A if and only if

µ = λ− di

is an eigenvalue of Ai, and they share the same eigenvector.
The inverse of Ai is a permuted arrowhead matrix

A−1
i =




D−1
1 w1 0

wT
1 b wT

2

0 w2 D−1
2


 , (7)

where

w1 = −D−1
1 z1

1

ζi
,

w2 = −D−1
2 z2

1

ζi
,

b =
1

ζ2i

(
1

ρ
+ zT1 D

−1
1 z1 + zT2 D

−1
2 z2

)
. (8)
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The above formulas for the inverse, which can be verified directly, can also be
deduced from [3, Fact 2.16.4], [8, pp. 225] or [10, Theorem 1]. The computation
of the scalar b in (8), is critical to how well we are able to compute λ.

The eigenvalue ν of a real symmetric arrowhead matrix A−1
i from (7) is a

zero of the secular equation (see, for example [24, 17])

g(ν) = b− ν − wT (∆− νI)−1w = 0, (9)

where

∆ =

[
D1

D2

]
, w =

[
w1

w2

]
.

Once ν is computed, we compute µ = 1/ν. The normalized and unnormalized
eigenvectors v and x are computed by applying (4) to the matrix Ai, that is,

x =



x1

...
xn


 =




(D1 − µI)−1 z1

−ζi
µ

(D2 − µI)−1 z2


 , v =

x

‖x‖2
. (10)

If λ is an eigenvalue of A which is closest to the pole di, then µ is the
eigenvalue of matrix Ai which is closest to zero and

ν =
1

µ
= ±

∥∥A−1
i

∥∥
2
.

We say that ν is the largest absolute eigenvalue of A−1
i . In this case, if all entries

of A−1
i are computed with high relative accuracy, then, according to standard

perturbation theory, any reasonable algorithm can compute ν to high relative
accuracy (see Section 2.2).

Throughout the paper, we assume that the computations are carried out in
the standard floating-point arithmetic with the machine precision εM = 2−52 ≈
2.2204 ·10−16 (see [14, Chapter 2] for details). Thus, the floating-point numbers
have approximately 16 significant decimal digits. The term “double the working
precision” means that the computations are performed with numbers having
approximately 32 significant decimal digits, or with the machine precision ε2M
or smaller.

Notice that all entries of A−1
i are computed to high relative accuracy using

standard precision, except possibly b in (8). For example, using the standard
model from [14, Section 2.2], the error analysis for the respective indices k gives

fl([D1]k) =
1

dk − d1
(1 + ε1), |ε1| ≤ 2εM ,

f l([w1]k) =
ζk

ζi(dk − di)
(1 + ε2), |ε2| ≤ 3εM ,

If b is not computed to high relative accuracy and it influences
∥∥A−1

i

∥∥
2
, it

is sufficient to compute it with double the working precision. Whether double
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the working precision is needed is determined as follows: set

Kb =
1 + ρzT1 D

−1
1 z1 − ρzT2 D

−1
2 z2∣∣1 + ρzT1 D

−1
1 z1 + ρzT2 D

−1
2 z2

∣∣ ,

Kz =
1

|ζi|

n∑

j=1
j 6=i

|ζj |,

κν ≤ min
{
(n+ 4)

√
nKb, 3

√
n+ (n+ 4)

(
1 + 2Kz

)}
. (11)

Here Kb measures whether b is computed with high relative accuracy, Kz mea-
sures whether b influences

∥∥A−1
i

∥∥
2
, and κν measures the accuracy of the exact

eigenvalue ν̂ of the computed matrix fl(A−1
i ),

ν̂ = ν(1 + κνεM ),

similarly as in [17, Theorem 5].
If κν ≫ O(n), then b needs to be computed in double the working precision

(see section 2.3). The details of the proofs of the above facts are similar to the
proofs of [17, Theorems 5 and 7].

If λ is an eigenvalue of A which is not closest to the pole di, then µ is not
the eigenvalue of Ai which is closest to zero. Further, |ν| <

∥∥A−1
i

∥∥
2
, and the

quantity

Kν =

∥∥A−1
i

∥∥
2

|ν| (12)

tells us how far ν is from the largest absolute eigenvalue of A−1
i . If Kν ≫ 1,

then the standard perturbation theory does not guarantee that the eigenvalue
µ will be computed with high relative accuracy. One remedy to this situation
is to use non-standard shifting as follows:

(R1) we can compute λ by shifting to the neighboring pole on the other side if
that gives a smaller value of Kν ,

(R2) if shifting to another neighboring pole is not possible, we can invert A−
σI, where the shift σ is chosen near but not equal to λ, and not equal
to the neighboring poles. This results in a DPR1 matrix whose largest
absolute eigenvalue is computed accurately. If no floating-point numbers
σ lie between λ and the neighboring poles, σ and the corresponding DPR1
matrix must be computed in double the working precision.

We need to address one more special situation. If λ is much closer to zero
than to the neighboring pole or poles3, |λ| ≪ min{|λ−dk|, |λ−dk−1|}, then the
formula (6) may involve large cancellation, and λ may be inaccurate in spite of
the accurately computed ν and v. In this case, λ can be computed accurately

3There can be at most one such eigenvalue.
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as λ = 1/ν, where ν is the largest absolute eigenvalue of A−1. If all poles are
non-zero, the inverse of A is again an unreduced DPR1 matrix of the form

A−1 = D−1 + γD−1zzTD−1, γ = − ρ

1 + ρzTD−1z
. (13)

If the denominator in γ is computed as zero, the matrix A is numerically singular
and we can set λ = 0.

The described procedure is implemented in algorithm dpr1eig.
The algorithm dpr1eig extends naturally to the Hermitian case (c.f. [17,

§6.1]).

2.1. Accuracy of the algorithm

Let (λ̃, ṽ) denote the eigenpair computed by Algorithm 1 in the standard
floating-point arithmetic. Let ν̃ denote the computed eigenvalue of A−1

i . If ν̃
is the absolutely largest eigenvalue of A−1

i and if it is computed by bisection,
then the error bound from [24, §3.1] immediately implies that4

ν̃ = ν(1 + κbisεM ), κbis ≤ 1.06n
(√

n+ 1
)
. (14)

The computed eigenpair satisfies

λ̃ = fl(λ) = λ(1 + κλεM ),

ṽi = fl(vi) = vi(1 + κviεM ), i = 1, . . . , n,

where
|κλ|, |κvi | ≤ O(κν + κbis),

and κν is defined by (11).
If 1 ≪ Kb ≤ O(1/εM ), then, after evaluating b with double the working

precision, κν is given by (11) with Kb replaced by KbεM .5 With our approach
componentwise high relative accuracy of the computed normalized eigenvectors
implies, in turn, their numerical orthogonality.

The proofs of the above error bounds are similar to the error analysis in [17].

2.2. Fast secular equation solvers

Instead of using bisection to compute zeros of secular equation (9) in Algo-
rithm 1, we can use some fast zero finder with quadratic or even cubic conver-
gence like those from [23, 4, 20]. Such zero finders compute zeros to machine
accuracy using a small number of direct evaluations of the Pick function and

4Notice that a similar error bound holds for all eigenvalues which are of the same order of
magnitude as ν.

5If Kb ≥ O(1/εM ), that is, if Kb = 1/εE for some εE < εM , then b needs to be computed
with extended precision εE . Usage of higher precision in conjunction with the eigenvalue
computation for DPR1 matrices is analyzed in [2], but there the higher precision computation
is potentially needed in the iterative part. This is less convenient than our approach where
the higher precision computation is used only to compute one element.
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Algorithm 1

[λ, v] = dpr1eig (D, z, ρ, k)
% Computes the k-th eigenpair of an ordered irreducible DPR1 matrix
% A = diag (D) + ρzz′, ρ > 0
% Find the shift σ = di such that di is the pole nearest to λ
% Exterior eigenvalue k = 1:
if k == 1
σ = d1

else

% Interior eigenvalues k ∈ {2, . . . , n}:
D̄ = D − dk
τ = D̄k−1/2
F = 1 + ρ

∑
(z. ∗ z./(D̄ − τ))

if F > 0
σ = dk

else

σ = dk−1

end

end

compute the arrowhead matrix A−1
i ≡ (A− σI)−1 according to (7) and (8)

compute κν from (11)
if κν ≫ O(n)
recompute b from (8) by using double the working precision (c.f. section 2.3)

end

if σ = dk−1

compute the leftmost eigenvalue ν of A−1
i by bisection (c.f. section 2.2)

else

compute the rightmost eigenvalue ν of A−1
i by bisection

end

compute v by (10), where µ = 1/ν
compute λ = µ+ σ
compute Kν from (12)
if Kν ≫ 1
apply one of the remedies (R1) or (R2)

end

if |λ| ≪ min{|λ− dk|, |λ− dk−1|}
recompute λ from A−1

end

8



its its derivative, where O(log(log(1/ε))) iterations are needed to obtain an ε-
accuracy [21].

In particular, we tested the implementation of the cubically convergent zero
finder by Borges and Gragg from [4, §3.3], with the stopping criterion defined by
[4, p. 15]. From [4, (21)], it follows that the accuracy of the computed solution
satisfies a similar backward error bound as (14). This was indeed, true in all
our tests. The number of iterations never exceeded 7.

Similarly, for the solution of the secular equation (3), which may be needed
in the last two “if” statements in Algorithm 1, one can use the fast secular
equation solver by Li [20]. This solver is implemented in the LAPACK routine
DLAED4. The accuracy of the computed solution satisfied a similar backward
error bound as (14) and the number of iterations behaved as predicted.

Although the operation count of both fast zero finders is approximately
half of the operations needed for bisection, we observed no speed-up in Matlab
implementation.

2.3. Implementation of the double the working precision

We tried three different implementations of the double the working precision:

• by converting all quantities in the formulas (8) or (13) to variable precision
by Matlab [22] command sym with parameter ’f’, and then performing
the computations;

• by evaluating all parts of the formulas (8) or (13) using extended precision
routines add2, sub2, mul2, and div2 from [7]; and

• by converting all quantities in the formulas (8) or (13) from standard
64 bit double precision numbers, declared by REAL(8), to 128 quadruple
precision numbers, declared by REAL(16), in Intel FORTRAN compiler
ifort [15], and then performing the computations.

Having to invoke higher precision clearly slows the computation down. In
Matlab, when using variable precision sym command, the computation may
be slowed down by a factor of three hundred or more for each eigenvalue that
requires formulas (8) or (13) to be evaluated in higher precision. This makes use
of sym prohibitive for higher dimensions. Extended precision routines by Dekker
[7] require on average ten floating-point operations. The fastest implementation
is the one in ifort which is only about three times slower. Thus, the algorithm
benefits from a good implementation of higher precision.

3. Numerical Examples

We have used the following implementations of Algorithm 1:

• dpr1eig(M) - Matlab implementation, with double the working precision
implemented using extended precision routines from [7].
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• dpr1eig(J) - Julia [18] implementation, with double the working precision
implemented using Julia package DoubleDouble.jl [19] – this implemen-
tation is publicly available in the Julia package Arrowhead.jl [19], and is
our preferred implementation.

We compared Algorithm 1 with the following routines:

• eig - Matlab’s standard eigenvalues routine.

• dlaed9 - LAPACK routine DLAED9 compiled with ifort Fortran compiler.

• Math - Mathematica [29] eigenvalue routine with 100 digits of precision
(properly rounded to 16 decimal digits).

We illustrate our algorithm with four numerically demanding examples. Ex-
amples 1 and 2 illustrate Algorithm 1, Example 3 illustrates the use of double
precision arithmetic, Example 4 illustrates an application to higher dimension,
and Example 5 shows the effect of using double the working precision on overall
timing. Since dpr1eig(M) and dpr1eig(J) give numerical identical results, we
denote these results by dpr1eig.

Example 1. In this example quantities Kb from (11) are approximately 1 for
all eigenvalues, so we guarantee that all eigenvalues and all components of their
corresponding eigenvectors are computed with high relative accuracy by Algo-
rithm 1, using only standard machine precision. Let A = D + zzT , where

D = diag (1010, 5, 4 · 10−3, 0,−4 · 10−3,−5),

z =
[
1010 1 1 10−7 1 1

]T
.

The computed eigenvalues are:6

λ(eig) λ(dlaed9) λ(dpr1eig,Math)

1.000000000100000 · 1020 1.000000000100000 · 1020 1.000000000100000 · 1020

5.000000000099998 5.000000000100000 5.000000000100000
4.000000099999499 · 10−3 4.000000100000001 · 10−3 4.000000100000001 · 10−3

1.665334536937735 · 10−16 1.000000023272195 · 10−24 9.99999999899999(7, 9) · 10−25

0 −3.999999900000001 · 10−3
−3.999999900000001 · 10−3

−25.00000000150000 −4.999999999900000 −4.999999999900000

We see that all eigenvalues computed by dpr1eig (including the tiniest ones),
are exact to the machine precision. The eigenvalues computed by dlaed9 are all
accurate, except λ4. The eigenvalues computed by eig are accurate according
to the standard perturbation theory, but they have almost no relative accuracy7.

6If, in the last column, the last digits computed by dpr1eig and Mathematica, respectively,
differ, they are displayed in parentheses.

7The displayed eigenvalues are the ones obtained by the Matlab command
[V,Lambda]=eig(A). The command Lambda=eig(A) produces slightly different eigenvalues.
The reason is that Matlab uses LAPACK routine dsyev.f, which, in turn, uses different
algorithms depending whether eigenvectors are required or not.
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Due to the the accuracy of the computed eigenvalues, the eigenvectors computed
by dpr1eig are componentwise accurate up to machine precision, and therefore,
orthogonal up to machine precision. The eigenvectors computed by dlaed9 are
also componentwise accurate, except for v4:

v
(dlaed9)
4 v

(dpr1eig,Math)
4

1.000000011586098 · 10−17 9.99999999899999(6, 9) · 10−18

2.000000023172195 · 10−18 1.999999999800000 · 10−18

2.500000028965244 · 10−15 2.499999999749999 · 10−15

−1.000000000000000 −1.000000000000000
−2.500000028965244 · 10−15

−2.499999999749999 · 10−15

−2.000000023172195 · 10−18
−1.999999999800000 · 10−18

Example 2. In this example, despite very close diagonal elements, we again
guarantee that all eigenvalues and all components of their corresponding eigen-
vectors are computed with high relative accuracy. Let A = D + zzT , where

D = diag (1 + 40ε, 1 + 30ε, 1 + 20ε, 1 + 10ε),

z =
[
1 2 2 1

]
.

and ε = 2−52 = 2εM . For this matrix, the quantities Kb are again of order one
for all eigenvalues, so Algorithm 1 uses only standard working precision. The
computed eigenvalues are:

λ(eig) λ(dlaed9) λ(dpr1eig)

11 + 32ε 11 + 48ε 11 + 32ε
1 + 38ε 1 + 41ε 1 + 39ε
1 + 31ε 1 + 27ε 1 + 25ε
1 + 8ε 1 + 9ε 1 + 11ε

Notice that all computed eigenvalues are accurate according to standard pertur-
bation theory. However, only the eigenvalues computed by dpr1eig satisfy the
interlacing property. The eigenvalues computed by Math, properly rounded to
32 decimal digits are:

λ(Math)

11.000000000000005551115123125783
1.0000000000000085712482686374087
1.0000000000000055511151231257826
1.0000000000000025309819776141565

If Algorithm 1 is modified to return σ and µ (both in standard precision), then
for the eigenvalues λ2, λ3 and λ4 the corresponding pairs (σ, µ) give represen-
tations of those eigenvalues to 32 decimal digits. In our case, the exact values
σ + µ properly rounded to 32 decimal digits are equal to the corresponding
eigenvalues computed by Mathematica displayed above.

The eigenvectors v2, v3 and v4 computed by eig span an invariant subspace
of λ2, λ3 and λ4, but their components are not accurate. Due to the accu-
racy of the computed eigenvalues, the eigenvectors computed by dpr1eig are
componentwise accurate up to the machine precision (they coincide with the
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eigenvectors computed by Math, and are therefore orthogonal. Interestingly,
in this example the eigenvectors computed by dlaed9 are also componentwise
accurate, but there is no underlying theory for such high accuracy.

Example 3. In this example (see [12]) we can guarantee that all eigenvalues
and eigenvectors will be computed with componentwise high relative accuracy
only if b from (8) is for k ∈ {2, 3, 4} computed in double of the working precision.
Let A = D + zzT , where

D = diag (10/3, 2 + β, 2− β, 1),

z =
[
2 β β 2

]
, β = 10−7.

For k ∈ {2, 3, 4} the quantities κν from (11) are of order O(107), so the
element b in each of the matrices needs to be computed in double of the working
precision. For example, for k = 2, the element b =

[
A−1

2

]
22

computed by

Algorithm 1 in standard precision is equal to b = 5.749999751891721 · 107,
while Matlab routine inv gives b = 5.749999746046776 · 107. Computing b
in double of the working precision in Algorithm 1 gives the correct value b =
5.749999754927588 · 107.

The eigenvalues computed by eig, dlaed9, dpr1eig and Math, respectively,
are all highly relatively accurate – they differ in the last or last two digits.
However, the eigenvectors v2, v3 and v4 computed by dpr1eig (with double
precision computation of b’s), are componentwise accurate to machine precision
and therefore orthogonal. The eigenvectors computed by eig and dlaed9 are, of
course, orthogonal, but are not componentwise accurate. For example,

v
(eig)
2 v

(dlaed9)
2 v

(dpr1eig,Math)
2

2.088932176072975 · 10−1 2.088932143122528 · 10−1 2.088932138163857 · 10−1

−9.351941376557037 · 10−1 −9.351941395201120 · 10−1 −9.351941398441738 · 10−1

−6.480586028358029 · 10−2 −6.480586288204153 · 10−2 −6.480586264549802 · 10−2

−2.785242341430628 · 10−1 −2.785242297496694 · 10−1 −2.785242290885133 · 10−1

Example 4. In this example we extend Example 3 to higher dimension, as in
TEST 3 from [12, §6]. Here A = D + zzT ∈ R

202×202, where

D = diag (1, 2 + β, 2 − β, 2 + 2β, 2− 2β, . . . , 2 + 100β, 2− 100β, 10/3),

z =
[
2 β β . . . β 2

]
, β ∈ {10−3, 10−8, 10−15}.

For each β, we solved the eigenvalue problem with Algorithm 1 without using
double the working precision (dpr1eig nd), dpr1eig, and dlaed9. For β = 10−3,
Algorithm 1 used double the working precision for computing 25 eigenvalues,
and for β = 10−8 and β = 10−15 double the working precision was needed for
all but the largest eigenvalue. As in [12, §6], for each algorithm we computed
orthogonality and residual measures,

O = max
1≤i≤n

‖V T vi − ei‖2
nεM

, R = max
1≤i≤n

‖Avi − λivi‖2
nεM‖A‖2

,
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respectively. Here V =
[
v1 v2 · · · vn

]
is the computed matrix of eigenvec-

tors, and ei is the i-th column of the identity matrix.
Since we proved the componentwise accuracy of eigenvectors computed by

dpr1eig, we take those as the ones of reference. Table 1 displays orthogonality
measures, residual measures, relative errors in the computed eigenvalues and
componentwise relative errors in the computed eigenvectors, superscripted by
the name of the respective algorithm. From table 1, we see that all algorithms

β 10−3 10−8 10−15

O(dpr1eig nd) 1.47 5.8 · 104 2.1 · 1011
O(dpr1eig) 0.059 0.039 0.045

O(dlaed9) 0.049 0.064 0.045

R(dpr1eig nd) 0.0086 0.033 0.0043

R(dpr1eig) 0.0086 0.039 0.0043
R(dlaed9) 0.029 0.03 0.013

max
1≤i≤n

|λ
(dpr1eig nd)
i

−λ
(dpr1eig)
i

|

|λ
(dpr1eig)
i

|
2.2 · 10−16 0 2.2 · 10−16

max
1≤i≤n

|λ
(dlaed9)
i

−λ
(dpr1eig)
i

|

|λ
(dpr1eig)
i

|
1.5 · 10−15 2.2 · 10−16 0

max
1≤i,j≤n

|[v
(dpr1eig nd)
i

]j−[v
(dpr1eig)
i

]j |

|[v
(dpr1eig)
i

]j |
2.7 · 10−13 2.8 · 10−8 0.518

max
1≤i,j≤n

|[v
(dlaed9)
i

]j−[v
(dpr1eig)
i

]j |

|[v
(dpr1eig)
i

]j |
2.2 · 10−12 1.9 · 10−8 0.043

Table 1: Orthogonality measures, residue measures, relative errors in computed eigenvalues,
and componentwise relative errors in computed eigenvectors.

behave exactly as predicted by the theoretical analysis. All algorithms compute
all eigenvalues to high relative accuracy because it is the same as normwise accu-
racy for this case. dpr1eig nd loses orthogonality as predicted by the respective
condition numbers. The number of correct digits in the computed eigenvectors
is approximately the same for dpr1eig nd and dlaed9, but there is no proof
of such componentwise accuracy of the eigenvectors computed by dlaed9. As
a consequence of their componentwise accuracy, the eigenvectors computed by
dpr1eig are fully orthogonal.

Example 5. To illustrate the effect of using double the working precision, in
Table 2 we give timings for the matrix A ∈ R

202×202 of the same form as in
Example 4.

β = 10−3 β = 10−8 β = 10−15

dpr1eig(M) 11 17 17
dpr1eig(J) 1.2 2.2 2.2
dlaed9 0.13 0.13 0.13

Table 2: Running time (in seconds) for the computation of eigenvalues and eigenvectors of
DPR1 matrix A of order n = 2002.
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We see that the Julia version of Algorithm 1 is almost 10 times faster than
the Matlab version, which makes Julia version an implementation of preference.
As in Example 4, for β = 10−3, dpr1eig used double the working precision to
compute respective b when computing 25 eigenvalues, and for β = 10−8 and
β = 10−15 double the working precision was needed for all but the largest
eigenvalue. We see that the overhead of using double the working precision is
approximately 55% in both, Julia and Matlab.

Acknowledgment

We would like to thank Ren Cang Li for providing Matlab implementation
of the LAPACK routine DLAED4 and its dependencies.

References

[1] E. Anderson et al., LAPACK Users’ Guide, SIAM 3rd ed., Philadelphia,
(1999).

[2] J. L. Barlow, Error analysis of update methods for the symmetric eigenvalue
problem, SIAM J. Matrix Anal. Appl., 14 (1993) 598-618.

[3] D. S. Bernstein, Matrix Mathematics: Theory, Facts and Formulas, Prince-
ton Univ. Press, New Jersey, 2nd ed. (2009).

[4] C. F. Borges, W. B. Gragg, A parallel Divide - and - Conquer Method
for the Generalized Real Symmetric Definite Tridiagonal Eigenproblem, in
Numerical Linear Algebra and Scientific Computing, L. Reichel, A. Ruttan
and R. S. Varga, eds., de Gruyter, Berlin (1993) 11-29.

[5] J. R. Bunch and C. P. Nielsen, Rank-one modification of the symmetric
eigenproblem, Numer. Math., 31 (1978) 31-48.

[6] J. J. M. Cuppen, A divide and conquer method for the symmetric tridiag-
onal eigenproblem, Numer. Math., 36 (1981) 177-195.

[7] T. J. Dekker, A floating-point technique for extending the available preci-
sion, Numer. Math., 18 (1971) 224-242.

[8] S. Delvaux and M. Van Barel, Structures preserved by matrix inversion,
SIAM. J. Matrix Anal. Appl., 28 (2006) 213228.

[9] J. Dongarra and D. Sorensen, A fully parallel algorithm for the symmetric
eigenvalue problem, SIAM J. Sci. Statist. Comput., 8 (1987) 139-154.

[10] L. Elsner and P. Rozsa, On eigenvectors and adjoints of modified matrices,
Linear and Multilinear Algebra, 10 (1981) 235-247.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations, The John Hopkins
University Press, Baltimore, 4th ed. (2013).

14



[12] M. Gu and S. C. Eisenstat, A stable and efficient algorithm for the rank-one
modification of the symmetric eigenproblem, SIAM J. Matrix Anal. Appl.,
15 (1994) 1266-1276.

[13] M. Gu and S. C. Eisenstat, A divide-and-conquer algorithm for the sym-
metric tridiagonal eigenproblem, SIAM J. Matrix Anal. Appl., 16 (1995)
79-92.

[14] N. Higham, Accuracy and Stability of Numerical Algorithms, SIAM,
Philadelphia, 2nd ed. (2002).

[15] Intel Fortran Compiler, http://software.intel.com/en-us/fortran-compilers

[16] Intel Math Kernel Library, http://software.intel.com/en-us/intel-mkl
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