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Abstract— As an exploration into a novel malware identifica-
tion and analysis technique, the ETTB++ tensor decomposition
toolkit was used to examine goodware and malware files to see
if it could both identify and cluster malware files. To this end,
the following three principle experiments were conducted using
ETTB++:

« Classifying file types;
« Distinguishing between malicious and benign PDFs;
« Identifying and clustering sophisticated exploit Kits.

This paper gives a brief primer on tensors and the ETTB++
tool, and then presents the methods and results from each of
these experiments. Preliminary findings showed that the tensor
decomposition tool was an effective means for distinguishing
between file types, and that it has potential for identifying
and clustering malicious files. Specifically, the major findings
presented in this report are:

« The tensor decomposition separated 81 out of 84 files
into their respective file types by grouping like file types
into the same components. This represented a successful
demonstration of unsupervised clustering and suggested
that the tool could also be used in conjunction with
supervised learning techniques to identify the file types
of unknown files at scale.

« Used in combination with a simple post-processing proce-
dure, the tensor decomposition tool separated malicious
and benign files of the same type with around 75%
accuracy. Further investigation is needed to determine
whether this is a true result or the artifact of a biased
dataset.

« When used on a fused data set comprised of disparate data
types with a naive decomposition, the tool did not generate
meaningful results. A better understanding of how to
craft good vectors and perform intelligent decomposition
is needed.

« Used in combination with a pre-processing procedure
based on subject matter expertise, the tensor decomposi-
tion tool clustered malicious files from sophisticated exploit
kits with over 70% accuracy and separated malicious and
benign files with around 75% accuracy.

The results demonstrate that the tensor decomposition tool
has utility for unsupervised learning and clustering, and that
this utility is augmented when it is used in combination
with other pre- and post-processing procedures and supervised
learning techniques. The results also indicate that additional
work is needed to understand the art of crafting good tensors
and choosing an appropriate decomposition for different types
of problems and data.

I. INTRODUCTION
A. Tensor decomposition methods

Here I need to put some background on Tensors. There is
a good paper by Chang et. al.[1] that touches on the approach
presented in this paper.

B. toolkit used during study

This section is not intended to give a thorough introduction
to the ETTB++ toolkit; rather, it describes basic terminology
and highlights the relevant features of the software necessary
to understand the results presented in this paper. For a de-
tailed description of the theory and operation of the software,
see [2].

ETTB++ stores and processes data in a multi-dimensional
array called a tensor. A tensor mode is simply a column
in the multidimensional array. The toolkit performs matrix
operations using a user specified algorithm, which performs
an eigenvalue decompositions on this data structure. This
process produces features called components which demon-
strate various patterns in the initial data. The algorithms
used for this study are ALS, which uses an alternating least
squares fit of the data and an APR method which assumes
the data is structured as a Poisson distribution. Both methods
are investigated in this study.

The software is launched from the command line and
can be interacted with through a GUI It takes as input
a delimited text file, referred to hereafter as a csv. The
input text file contains different columns of data, which
are the modes in the decomposition. Each row represents
a different data point. Figure |1 shows a sample of the data
used in the experiments in this paper. Here the bytes are
used as the modes of the decomposition. The individual
values in each row are referred to here as entries. The
user selects the number of modes from the input file to
be used in the decomposition, the type of decomposition
(ALS or APR), and specifies the number of components
into which the tensor should be decomposed. The resultant
components are represented by component plots, which show
the eigenvalue for each value in each mode. Each component
has an associated weight, which describes how prominent
the behavior described by that behavior ishigher weighted
components describe more prominent behavioral patterns.
As a processing step, the software assigns a unique integer



value to each unique entry in a mode. So for example
in figure 1, for the byte0 mode, 50 would be assigned a
value of 0, ff a value of 1, 89 a value of 2, etc. These
mapped integer values are used for the decomposition and
are retained in the results; thus, the values shown in the
decomposition results correspond to this mapped value, NOT
to the original value in the raw data. The reader should bear
this in mind when interpreting the output of the tensor toolkit.
The results presented in this paper are largely from the static
component view and it is not immediately obvious which raw
data value the results correspond to. For clarity and ease of
interpretation, data labels were derived by referring back to
the raw input data and are shown on many of the plots in
this paper.
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Fig. 1. Sample of Header bytes for 20 files

II. FILE CLASSIFICATION
A. Experiment 1

A dataset with 83 files of different file types was collected.
The file type breakdown is shown in Table I. A python script
was used to extract bytes 0-93 and 128-192 from all the
files in sample directory and to print these bytes to a csv.
These bytes were selected because they are in the header of
the file, which contains file type information, and because
these specific bytes are the ones exploited by the Linux file
command to identify the file type. The output csv file is
comma delimited with a separate row entry for each file,
with each byte in the file added as a separate column. The
last column in each entry is the name of the file, which
is not used in the tensor decomposition, but is used in the
post-processing to validate results. A 10-component APR
decomposition was run on the data, using only the first 8
bytes of the file as the modes.

ITI1. EXPERIMENT 1 RESULTS

The final fit for the decomposition was high at around 0.87,
indicating a good fit. Of the 10 components generated, only 9
were really viable components: the weights ranged from 1.6-
30 for the top 9 components, and the weight for the bottom
component was on the order of 10-95, meaning it essentially

TABLE I
DATASET 1 FILES

Type Details Number of Files
v.1.5(5) 10
v.1.4(3)

pdf v.1.6(1)
v.1.7(1)

docx 10

pptx 10

xlsx 10

pg JFIF(8) 10

: EXIF(2)

nf 10
.png 10
PE32(gui)I386(5) 10
|| PE32(console)I386(2)
exccutables)| * pp3ny x86.64(2)
PE32+ x86.64(1)
.sh(l) 3
others pl(1)
.csv(l)

didn’t exist and was only created because the decomposi-
tion was forced into 10 components. Using the software’s
interactive GUI and referring back to the original data, all
of the components could be correlated with one of the file
types. Table I summarizes the components, their weights,
and the file types they describe. These results confirm that the
tensor decomposition did successfully distinguish and cluster
the different file types. Figure 2 shows the component plots
labeled with the type of file they represent.

TABLE I
RESULTING DECOMPOSITION COMPONENT WEIGHTS

Component Weight File type

4 30 MS Office (.pptx, .docx, .xlsx)
2 10 PDF

6 10 rtf

7 10 png

8 8 JPG (JFIF standard)
1 2 JPG (EXIF standard)
3 8.45 PE

0 1.55 PE

5 1.55E-95 PE

9 3 others (.sh, .pl, .csv)

Several interesting findings resulted from this work. One
unexpected result was that the weight of the component was
equal to the number of files of that type in the original
data set. For example, the component that described the
MS Office suite of products was component 4, which had
a weight of 30. This corresponded directly to the 30 MS
Offices files in the dataset. Another unexpected result was
that the decomposition broke the executables into three
different components, even though all ten files were identical
in the first eight bytes. This curious result prompted the
question as to whether looking at more than the first eight
bytes would allow the decomposition to further distinguish
between the different types of executables (e.g. PE32 vs.
PE32+). The decomposition distinguished between JFIF and



EXIF standard JPGs, which was a file characteristic unknown
to the authors until examining the results. It also grouped all
ten PDF files into one component, even though they varied in
the eight byte. This byte described which version of Adobe
was used to create the PDE. Figure 3 shows this variation
and how it is called out by the decomposition. The fact that
all ten PDFs were grouped together despite variations in the
final byte reinforces the utility of the tensor decomposition
for identifying latent behavioral patterns.
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In figure 3 The different values represent different versions
of Adobe Acrobat used to create the file.

IV. IDENTIFYING MALICIOUS PDFs
A. Experimental Methods

Once it was established that the file type could be distin-
guished using a tensor decomposition, the next experiment
was crafted to determine whether or not the software could
aid in distinguishing between malicious and benign files of
the same type. The premise in this case was that malicious
files may contain information in their headers that benign
files do not, such as information related to code obfuscation
or instructions for executing code in a non-standard order.
In order to test this hypothesis, a collection of 109 PDF files
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Fig. 3. The eighth mode of component 2, corresponding to eighth byte of
PDF files.

was assembled, including 59 benign PDFs and 50 malicious
PDFs. The same script that was used in the classification ex-
periment was used here to extract targeted header information
from all the files and save this information to a formatted csy
file.

Several different decompositions were run on the data set,
varying the number of modes used, the number of com-
ponents, and the decomposition type. The results discussed
here are for a 10-component ALS decomposition using 17
modes (bytes 15-32 of the header information). Note this
limited number of components and modes represents an
overly simplified experiment and was used here for ease and
clarity of analysis. Once the components had been generated
and correlated with the original dataset, an additional post-
processing step was undertaken to see if the decomposition
successfully discriminated between malicious and benign
files. A feature vector was developed from each component
based on the entry in each mode with the highest eigenvalue.
In practice, this meant for each component, looking at each
mode and pulling out the highest peak, and identifying the
byte value to which the peak corresponded. Figure 4 shows
the component plots for components 1 and 9 and gives the
corresponding feature vectors that were generated for these
components. The feature vectors were then used to perform
clustering on the data, which is described below in the results
section.

B. Decomposition with n-grams

A second analysis performed on the PDF dataset was
inspired by a machine learning-based malware identifica-
tion tool developed at LPS. The tool uses an n-gramming
approach on labeled data to generate features for the tool
to learn on. A file is parsed into 6-byte n-grams using a
sliding window, and all of the n-grams from each file are
stored. After all the malicious and benign files have been n-
grammed, a malice score is assigned to each n-gram based
on its relative prevalence in malicious and benign files;
that is, n-grams that occur primarily in malicious files and
rarely in benign files are assigned a high malice score, and
vice versa. This same approach was used herethe PDF files
were n-grammed, and the top 10 n-grams with the highest
malice scores were retained in a keep list. A 10-mode binary
vector was then generated for each file: for each n-gram in
the keep list, if it occurred in the file, a value of 1 was
assigned; if it did not, a value of 0 was assigned. These
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Fig. 4. Components | and 9 of 10-component ALS decomposition on
malicious and benign PDFs, and the feature vectors developed from those
components

binary vectors were then fused with the header-byte vectors
described in the previous section into one data file. The data
file had 109 rows, each representing a different PDF file,
with 169 modesthe first 10 modes were the binary n-gram
vectors, the next 156 modes were the header byte values,
and the last mode was the file name, used in analysis of the
results. This file was used as input to the tensor toolkit, and
several decompositions were run with 27 modes (the binary
n-gram data and bytes 15-32). This experiment represents an
augmentation of the previous experiment, as the data used in
the previous experiment has been fused with the n-gram data,
which tests an important feature of the decomposition tool;
namely, the ability to find behavioral patterns in disparate
data.

V. PDF RESULTS
A. Decomposition with header information

Using bytes 15-32 of the files as the modes in an ALS
decomposition, 10 components were generated to describe
the PDF dataset comprised of malicious and benign PDFs.
As was the case in the file type classification experiment,
all of the components could be correlated with the elements
in the original dataset that they described. Each component

described either a set of good files or a set of bad files,
which was a promising result, indicating that malicious files
had been grouped together and benign files had been grouped
together. Six of the components represented benign files, and
the other four represented malicious files.

Feature vectors were generated from each component,
as described in section 2.1. Visual inspection of these 17-
element feature vectors suggested that the vectors that de-
scribed good files had more bytes in common with each
other than they did vectors that described bad files. To test
this hypothesis, a naive similarity metric was employed to
quantify how similar two vectors were: if the same byte
value occurred in the same position for both vectors, a 1
was assigned; otherwise, a 0 was assigned. The sum of the
comparison values was divided by the total elements in the
vector (17), and the resultant value ranged from O (no bytes
in common) to 1 (all bytes the same). This value was used as
the similarity metric. The most heavily weighted component
associated with good files, component 9, was used as the
center of the good feature vectors, and the most heavily
weighted component associated with bad files, component
I, was used as the center of the bad feature vectors. Each
vector was compared to the good vector and the bad vector,
and a goodness and badness similarity were computed. Thus
each component in the decomposition was associated with a
coordinate pair (x,y), where x was the goodness similarity
and y was the badness similarity. These pairs were plotted to
see how well the good and bad components clustered. Figure
5 shows this plot, with the bad components represented by
red points, and the good components represented by blue
points. Note that the true goodness or badness of the file
was determined by referring back to the original data, so the
red and blue dots show ground truth. The position in the xy-
plane shows the computed file maliciousness based on the
results of the tensor decomposition and similarity analysis
described above.

The preliminary results of this analysis are promising,
though additional work is needed to determine whether they
are meaningful or largely an artifact of the dataset. Figure
5 shows that all of the bad components have a non-zero
badness similarity score, and only one of them has a non-zero
goodness similarity score. The goodness similarity scores
were not as discriminative, however, as half of the good
components had non-zero scores, and half had scores of zero.
Nonetheless, the components are nearly linearly separable,
as illustrated by the dashed blue line in Figure 5. Three out
of the four bad components fall above this line, and four
out of the five good components fall below it, showing that
this simple analysis has a discrimination accuracy of over
75%. Further investigation is needed to determine whether
the toolkit is discriminating these components based on truly
malicious characteristics, or if there is some other latent dif-
ference that is being picked up by the tensor decomposition
(e.g. different Adobe versions being used to create the good
versus bad files because one dataset is older than the other).
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B. decomposition with n-grams

Several decompositions with varying parameters were run
on the hybrid n-gram header bytes dataset, including both
APR and ALS decompositions. The APR decomposition did
not produce viable results, as it had a final fit equal to zero,
and all of the component weights were small (less than 10-
11). ALS decompositions with 3, 10, and 109 components
were run. The 10- and 109-component runs both generated
an error, as they resulted in a singular matrix so the tensor
could not be fit to the specified number of components
using double precision arithmetic. When this occurs, the tool
throws a prompt with this error, and explains that this may
be occurring because the data cannot be compressed in a
meaningful way. After these failed trials, a 3-component ALS
decomposition was successfully run, with a final fit of 0.15.
All three components generated had the same weight, and
they also all had identical results for the first ten modes,
which were the modes that corresponded to the n-gram
data. This result suggests that only differences in the byte
data were being identified by the decomposition, meaning
no value was being extracted from the n-gram data. Here
the combination of n-gram and byte data did not generate
useful results. This experiment underscores the importance
of crafting a good tensor and performing an intelligent
decomposition to generate meaningful results. While this tool
is touted as having utility for fusing disparate data sets, the
results of this experiment show that such fusion requires
some effort on behalf of the user or an external analyst,
we regard this as an area that would benefit from further
exploration.

VI. SOPHISTICATED EXPLOIT KIT ANALYSIS

A. Experimental Methods

Three sophisticated exploit kits were downloaded from the
Internet for analysis. Two of the exploits were comprised of
11 executables each, and the third of only one executable.

Table III summarizes the breakdown of the malicious files
in each family. These 23 malicious files were collected in
a dataset with 20 benign files, and a byte extraction script
was run on all the files to extract the first 1024 bytes. As
described above, these bytes were assembled in a csv, which
was used as input data for the toolkit. Both APR and ALS
analyses were run on the data with varying numbers of
modes, but none of these runs yielded meaningful or interpret
able results.

TABLE 111
SUMMARY OF FILES ON SOPHISTICATED EXPLOIT DATA SET

File Family Number of Files
Exploit 1 1
Exploit 2 11
Exploit 3 11
Benign Executables 20

B. Decomposition on file feature data

While the byte data described above is an approximate
representation of the raw file, it does not capture character-
istics of the entire file and makes for difficult interpretation
due to the large number of modes. A second experiment was
designed to use pre-processed data that describes features of
the files that have potential relevance to the maliciousness
of a file. The data processing technique used here was taken
from the malware detection literature, specifically a 2008
paper by Perdisci et al. on identifying packed executables
to aid in malware detection [3]. The paper presents an
analysis tool that scans an executable and extracts nine file
features which can be used as input vectors to supervised
learning techniques to detected packed executables. In this
work the vectors were assembled into a dataset to be used
with an unsupervised learning technique, the tensor toolkit.
A description of nine features extracted from executables
is listed below. This analysis was performed on the same
dataset presented above, with 23 sophisticated malware files
from three families and 20 benign executables.

o Number of standard sections

o Number of non-standard sections

o Number of Executable sections

« Number of Readable/ Writable/ Executable sections

« Number of entries in the IAT

« Entropy of the PE header

« Entropy of the code section

« Entropy of the data section

« Entropy of the entire PE file

C. Results

A 4-component APR decomposition was performed on the
43-file dataset. Four components were chosen because the
dataset was comprised of three families of malware and a
set of goodware, so the intent was for each component to
describe one family of files. Table IV shows the results of the
decomposition, which illustrate that the tensor toolkit was,
for the most part, able to separate malware and goodware into



different components. Additionally, it did group malicious
files from the same family together. The first component
captured the single file in Exploitl, as well as 8 out of
the 11 files in Exploit2. The second component found 8 out
of the 11 components in Exploit3, and the third and fourth
components together described 15 out of the 20 benign files.
Considering the first two components the bad components
and the second two the good components, this analysis
yielded a malware detection accuracy of about 74%. This
result is impressive given that the malicious files analyzed
in this experiment are from sophisticated exploit kits that are
designed to mimic benign files as closely as possible. The
results of this experiment demonstrate the utility of coupling
the unsupervised learning capability of the tensor toolkit with
intelligent data processing to find relationships in the data
that are difficult to find with data processing alone.

TABLE IV
RESULTS FROM THE APR DECOMPOSITION ON THE FILE FEATURE
VECTORS

Component | Files Described by component | Number of files
Exploit] 1
1 Exploit2
Benign
Exploit3
Benign
3 Benign
Benign
4 Exploit2
Exploit3

(=]

1 b \O| v = Go| Lh 00

VII. CONCLUSIONS

Three principle experiments were conducted using the
ETTB++ tensor decomposition toolkit to analyze malicious
and benign files: 1) classification of file types; 2) discrimi-
nation between malicious and benign files of the same type;
and 3) grouping families of malicious files together. The
results of these experiments showed that the toolkit could
successfully be used to classify file types, and that it has
potential for discriminating between malicious and benign
files and for grouping families of malicious files together.
In addition to these immediate results, these experiments
showed that a carefully crafted dataset and tensor, as well
as a thoughtful decomposition are necessary O produce
meaningful results. To that end, future work in this vein
should focus on gaining a better understanding of how
the decompositions work, which type of decomposition is
appropriate for what type of data, and how tensors should
be formed for different types of problems. Additionally, the
results of experiments two and three demonstrated the power
of coupling the tensor decomposition software with other

pre- and post-processing data analysis techniques to find

relationships in the data that neither the tensor toolkit nor
the data processing techniques alone are able to find. This
is another area that warrants further exploration, particularly
understanding how the decomposed components can be used
to identify clusters of data that exhibit similar behavior.
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