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1 Introduction

One of the most widely used methods of �nding isotropic clusters in a dataset is the K-means algorithm
(and its variants). This unsupervised hard clustering method is essentially a gradient-decent minimization
procedure, which begins with an initial set of K cluster-centers and iteratively updates the set so as to
decrease an error function (e.g., sum of squared errors). The complexity of an minimization iteration of the
K-means algorithm applied on a sample size of m instances, each being characterized by N attributes, is
O(K*m*N). This complexity, which is linear in K, m and N, is one of the reasons for the popularity of the
K-means type of clusterin algorithm, because K, m and N are usually very large nowaday. Convergence of
the K-means algorithm in �nite iterations is proven in (Selim and Ismail, 1984). Low computational cost
is undoubtedly the most attractive advantage of the K-means algorithm in comparison to other clustering
methods, which are usually of non-linear complexity. Other advantages of the algorithm include its intuitive
interpretation, straightforward implementation, and fast convergence.
However, the K-means algorithm has the following shortcomings:

1. It cannot determine the number K of clusters except by repeatedly using the algorithm for di¤erent
values of K. It is usually di¢ culty to estimate from the nature of the dataset in the application.

2. It is sensitive to the selection of the K initial partition or prototypes/centroids, because the algorithm
may get trapped into a nonglobal local minimum of the objective criterion.

3. It is sensitive to noises and outliers, which can increase the squared error dramatically.

4. The use of it is often limited to numerical attributes. It is applicable only when the numerical mean is
de�ned.

5. In general, the less isotropical the clusters in the dataset are, the more its clustering performance
su¤ers.

Remedies of these shortcomings have been proposed: Haung (1998) presented the K-prototypes algo-
rithm, which is based on the K-means algorithm but removes numerical data limitations while preserving
its e¢ ciency. The algorithm clusters objects with numerical and categorical attributes in a way similar to
the K-means algorithm. The similarity measure on numerical attributes is the square Euclidean distance;
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the similarity measure on the categorical attributes is the number of mismatches between objects and the
cluster prototypes.
A clustering algorithm, that attempts to reduce the sensitivity of the K-means algorithm toward noises

and outliers is the K-medoids or PAM (partition around medoids �(Kaufmann and Rousseeuw, 1987)). It is
similar to the K-means algorithm, but di¤ers from the K-means in its representation of the di¤erent clusters.
Each cluster is represented by the most centric object in the cluster, rather than by the mean that may not
belong to the cluster. Another clustering algorithm, that attempts to reduce the sensitivity of the K-means
algorithm toward noises and outliers, is obtained by using the sum of absolute errors instead of SSE as
the minimization criterion (Estivill-Castro, 2000). Again, it requires more computation than the K-means
algorithm.
This paper proposes yet another clustering algorithm that remedies shortcomings 1, 2, 3 and 5 listed

above. Shortcoming 4 can be coped with for the proposed algorithm by using the same idea as that in
Haung (1998). This is discussed in a forthcoming paper. The proposed algorithm determines the number
K of clusters in the process, alleviates the local-minimum problem, reduces or eliminates the e¤ects of
noises and outliers, and can �nd elliptical clusters. The proposed algorithm is based on a novel similarity
measure called the Gaussian similarity, and thus the new algorithm is called the Gaussian similarity clustering
(GSC) or algorithm. As compared with the K-means algorithm, GSC converges as fast and lends intuitive
interpretation and not much harder implementation, but each of its iteration involves more computation.
Fortunately, the computation in an iteration can be greatly reduced by mathematical analysis and numerical
consideration of the Gaussian similarity.
GSC is related with a method of convexifying the sum squared error (SSE) for avoiding its nonglobal local

minima in data �tting and the method�s successful application to training neural networks were reported in
[3, 4, 2, 5, 6, 7]. The method transforms the SSE into a risk-averting error (RAE) by applying the operator
exp (� (�)) to each summand of the SSE, where the risk sensitivity index � is a positive-valued variable. This
RAE is inspired by but di¤erent from the error function with the same name that is used in deriving robust
controllers and �lters [1, 9, 10].
It is appropriate to mention here that GSC is a relatively inexpensive way to �nd a Gaussian mixture

model of the dataset [?, ?, ?].

2 Sum of Gaussian Similarities (SGS) in an Isotropic Gaussian
Cluster

Roughly speaking, for an isotropic cluster, the similarity measure used should be large between two data
points with a small Enclidean distance and drops o¤ quickly as the Euclidean distance increases beyond the
�radius� of the �spherical� cluster. Gaussian similarity is such a similarity measure, which based on the
Gaussian density function. For a given standard deviation (sd) �, the Gaussian similarity between the data

points, vectors x and y, is the value of the Gaussian density function g (x; y; �) = 1
�
p
2�
e�

kx�yk2

2�2 , where k�k
is the Euclidean norm. The similarity measure g (x; y; �) is called the Gaussian similarity relative to the
standare deviation (sd) � or variance �2. Note that the smaller kx� yk =� is (or the closer x and y are
relative to the scale �), the greater the Gaussian similarity between x and y is and drops o¤ quickly as
kx� yk increases to more than 2�. For example, the Gaussian similarity g (x; y; �) is 0:39894�, 0:24197�,
0:05399�, 0:004432�, 0:000134�, 0:0000015� for kx� yk = 0, �, 2�, 3�, 4�, 5�, respectively.
Let X = fxk; k = 1; : : : ;Kg � RN be a given set of data points and p be a prototype for X, the data

points xk and the prototype p being a vector from the Euclidean space RN . The sum of Gaussian similarities
(SGS) of all the data points xk 2 X to p is

G (p; �) =

KX
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1

�
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e�
kxk�pk2

2�2 (1)



As mentioned above, the Gaussian similarity drops o¤ quickly as kxk � pk increases to more than 2� and
approaches 0 as kxk � pk increases to more than 3�. This de-emphasizes the e¤ect of data points more than
3� away from p on SGS. Starting with a given p, we move it by minimizing (??) to p� = argminpG (p; �).
Those data points that are more than 3� away from p� are supposed to belong to a di¤erent cluster. This
way, the prototype p would be at the �center�of the cluster without being pulled unduely by outliers or data
points from other clusters. The size of the cluster �centered�at p� depends on �, which is to be selected to
de�ne the cluster separated from others.
It is proven that the convexity region of G (p; �) expands monotonically as � increases. To make advantage

of larger convexity regions, G (p; �) is started at a very small �, which is gradually increased. If the cluster is
isotropic, � is increased to about 1/3 to 2/5 of the �radius�of the isotropic cluster, which is estimated in the
iterative process of minimizing G (p; �). Equally important, throughout the process of minimizing G (p; �)
and increasing �, only those data points within the current 4� to 5� (Euclidean distance) of the current p
need to be taken into consideration or computation, greatly saving the computation required.

3 Normalized Sum of Gaussian Similarities (NSGS) in an Isotropic
Gaussian Cluster

For � su¢ ciently small or kxk � pk2 su¢ ciently large, the computation of e�
kxk�pk2

2�2 in g (xk; p; �) incurs
computer (or arithmetic) under�ow. To avoid such a problem, we use the following normalized mean of
Gaussian similarities (NSGS)
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and evaluate C (p; �) as follows: For the vector p, let the set S (p; �) = argmaxk2f1;:::;Kg g (xk; p; �), which
may contain more than one element if a tie exists, andM (p; �) = mink fkjk 2 S (p; �)g which is the smallest
index k among all values in S (p; �). It follows that for all k 2 f1; :::;Kg,
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De�ning the symbol
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we have, by straightforward calculation,
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Hence the NSGS C (p; �) is computed without computer under�ow whatever value � > 0 is.



4 Gradient and HessianMatrices of SGS and NSGS in an Isotropic
Gaussian Cluster

Recall the sum of Gaussian similarities (SGS) of p to all the data points xk 2 X:
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1
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X
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2�2 (4)

The derivative of G (p; �) with respect to pj is
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The second-order derivative of G (p; �) with respect to pj and pi is
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Note that the computation of both the �rst- and second-order derivatives incur computer under�ow. We

show how derivatives of the NSGS C (p; �) can be computed without computer under�ow in the following:
Straightforward calculation yields
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which shows that evaluation of the gradient vector
h
@C(p;�)
@pj

i
does not incur computer under�ow. By the

same idea, evaluation of the Hessian matrix
h
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i
can also be evaluated without incurring computer



under�ow.
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Limits of Normalized Mean of Gaussian Similarities
Because
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which shows that as � tends to 0, C (p; �) converges to the minimum squared error.
Observing that
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Recalling the power expansion formula,
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we have, for � su¢ ciently small,
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It follows that
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which shows that as � tends to 1, C (p; �) converges to the mean squared error. Therefore, for � large
enough, argminp C (p; �) = argminpG (p; �) t argminp 1

K

PK
k=1 kxk � pk

2.

5 Searching for an Isotropic Gaussian Cluster by Gradual Decon-
vexi�cation

Recall that the K-means algorithm determines K modes of the sum of squared errors (or equivalently the K
means, prototypes, or centroids) together in a minimization process. In contrast, GSC (Gaussian similarity
clustering) searches for one mode (or prototype) at a time. If not much prior knowledge is available, as is
usually the case, about the number and locations of the modes, a number of initial prototypes uniformly
distributed in the space RN of data points are �rst selected. It is better for the number to be larger than
�expected�. Instead of forcing K prototypes to represent K di¤erent clusters as by the K-means algorithm,
GSC drives each initial prototype to a mode of the SGS to represent a cluster of data points that are the
most similar to the initial prototype. It is possible for more than one initial prototype to be driven to the
same mode, only one is kept to represent their common cluster.
In the event some data points are not included in the clusters obtained, additional initial prototypes

can be selected to �nd additional clusters. An extremely small cluster so obtained may represent outliers.
Since prototypes are placed separately, the prototypes that have been placed remain unchanged and are not
involved in the computation for placing additional prototypes.
We note here that although we select a number of initial prototypes, they are adjusted one by one with

their clusters formed. Whenever the adjustment of an initial prototype with the formation of its cluster is
completed, the data points in the cluser are removed from the data sets.
Given a set X = fxk; k = 1; : : : ;Kg � RN of data points xk, a cluster is found �rst by minimizing the

Sum of Gaussian similarities (SGS) G (p; �) = 1
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p
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P
k e

�kxk�pk
2

2�2 by the variation of p, starting with a
selected initial prototype p0. be a given set of data points and p be a prototype for X, the data points xk
and the prototype p being vectors from the Euclidean space RN . The sum of Gaussian similarities (SGS) of
p to all the data points xk 2 X is

G (p; �) =
X
k
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=
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k
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kxk�pk2
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GSC (Gaussian similarity clustering) searches for a cluster by �nding a prototype p that minimizes the SGS
is represented by a prototype at the �center�of the cluster.



Before searching, we select a number of prototypes uniformly in an estimated region of the data points.
These prototypes usually do not coincide with a data point. In order to move a prototype in the direction
its most similar data point when � is very small, we have to use (3) to compute C (p; �), (5) to compute the
gradient vector of C (p; �), and if necessary, (6) to compute the Hessian matrix of C (p; �).
Moving each of the uniformly distributed initial prototypes into the �center� of its closest cluster at a

succession of increasing values of �2 yields yields candidates of the prototypes that represent those clusters
closest to the initial prototypes. Multiple prototypes may move into the same �center�of a cluster. Only a
single one is kept to represent the cluster. If there are data points more than 3� away from every obtained
�center�, more initial prototypes are created near them. In this manner, a guess of the number of prototypes
is needed no longer.
It is proven that the convexity region of G

�
p; �2

�
expands monotonically as the variance �2 decreases.

The limit of the convexity region of G
�
p; �2

�
is the entire prototype space (or data point space). For a very

small �2, each prototype stays at the center of a very small set of data points. When �2 gradually increases,
the cluster with p as the center becomes larger and larger in process of maximizing G

�
p; �2

�
. By eliminating

multiple prototypes at a center of a cluster, we make sure that there is a prototype at each center. If not
all the data points are within 3� of a prototype, additional prototypes can be provided among such data
points. If there are very few data points within 3� of a prototype, we may consider dropping the prototype
or the cluster.
In determining the position of prototype p, the process of increasing �2 stops whenever increasing �2 and

performing maximization at the increased value of �2 does not increase G
�
p; �2

�
much for a certain number

of times, indicating no additional data point is close enough to p between the begining value and ending
value of �2 over said certain number of times. The prototype is said to be mature and recorded.

6 Kernel Density Estimation for Clustering

The idea of using kernel density estimation for clustering is motivated by the following thought: Let the data
points in each of a number of clusters be obtained by sampling from a certain distribution, any distribution.
Assume that the density of the distribution of each cluster is known. Under this assumption, the clustering
problem can be easily solved perfectly using the densities.
The idea is to estimate the density of the entire data set �rst, and then cluster the data set using the den-

sity estimate. A popular approach to estimating the density is kernel density estimation, which has been much
studied. A good introduction to kernel density estimation can be found at https://en.wikipedia.org/wiki/Kernel_density_estimation.
If the kernel used is the Gaussian kernel, kernel density estimation is related to Gaussian similarity

clustering (GSC). Hopefully, we can �nd synergism or cross-fertilization between GSC and kernel density
estimation.
If the band width in the Gaussian kernel is large enough for the density estimate to be smooth enough, we

can look for local minima of the density estimate and use them as the prototypes after proper combination
of the local minima. On the other hand, GSC can help us in �nding the local minima.
According to the article at https://en.wikipedia.org/wiki/Kernel_density_estimation, if the actual den-

sity function from which the data points of a cluster is Gaussian, the optimal choice of the bandwidth � is
rule of thumb 1.06sn�1=5 (for single variate data) or 0:9an�1=5 (for multivariate data), where s is the stan-

dard deviation of the data points in the cluster, a = min
�
s; IQR1:34

�
, IQR is the interquartile range (i.e., the

75th percentile minus the 25th percentile), and n is the number of data points in the cluster [?] [Silverman
[1986], "Density estimation for statistics and data analysis"]. s and IQR are di¢ culty, if not impossible to
estimate especially before the cluster is identi�ed. Fortunately, the mode of the density estimate is not too
sensitive to the bandwith as long as it is large enough for the density estimate to be unimodal, provided
the data points from the true multivariate normal density are symmetric in each coordinate axis [8] [On
Estimation of a Probability Density Function and Mode, Annals of Mathematical Statistics, Vol. 33, Issue
3, pp. 1065-1076, Sept. 1962].
GSC (Gaussian similarity clustering) algorithm can be looked upon as adaptively adjusting � to obtain

an estimate of the mode of the true Gaussian density of a cluster.



7 Sum of Gaussian Similarities (SGS) in a Nonisotropic Gaussian
Cluster

The general Gaussian density N (x; p; V ) with mean vector p and covariance matrix V :

N (x; p; V ) =
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N jV j
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2
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where its covariance matrix V can be estimated from the dataset S as follows:
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)
is 99.73% or 95.45%, depending on how close the clusters are. A better estimate Snew can be obtained in
accordance with V̂ new.

With the obtained V̂ , the data point xk is assigned to the cluster if
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for more than one cluster (or prototype p), xk is assigned

to the cluster with the largest (xk � p)T V �1 (xk � p) (or p).
The sum of Gaussian similarities in a nonisotropic Gaussian cluster is
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As mentioned above, the Gaussian similarity drops o¤ quickly as kxk � pk increases to more than 2� and
approaches 0 as kxk � pk increases to more than 3�. This de-emphasizes the e¤ect of data points that are
3� away from p on MGS and the e¤ect of outliers which are usually relatively farther away from a cluster.
To make advantage of larger convexity regions, G (p; �) is started at a very small �, which is gradually

increased to about 1/3 to 1/4 of the �radius� of the isotropic cluster, which is estimated in the process.
This way, the prototype p would be at the �center�of the cluster without being pulled unduely by outliers
or data points from other clusters. Equally important, after an initial stage in the process of minimizing
G (p; �), only those data points within 4� to 5� (Euclidean distance) of the current p need to be taken into
consideration or computation, greatly saving the computation required.

8 Gaussian Mixture Approach to Clustering Isotropic and Non-
isotropic Clusters

The approach "probabilistic model-based clustering using a mixture of models" is related to GSC. It is
computationally very expensive for a large data point dimension N . A large number of references can be
found by googling "probabilistic model-based clustering using a mixture of models".
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