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Abstract- Applications that monitor functions over rapidly
and unpredictably changing data, express their needs as continu-
ous queries. Our focus is on a rich class of queries, expressed as
polynomials over multiple data items. Given a set of polynomial
queries at a coordinator C, and a user-specified accuracy bound
(tolerable imprecision) for each query, we address the problem
of assigning data accuracy bounds or filters to the source of each
data item. Assigning data accuracy bounds for non-linear queries
poses special challenges. Unlike linear queries, data accuracy
bounds for non-linear queries depend on the current values of
data items and hence need to be recomputed frequently. So, we
seek an assignment such that a) if the value of each data item at
C is within its data accuracy bound then the value of each query
is also within its accuracy bound, b) the number of data refreshes
sent by sources to C to meet the query accuracy bounds, is as
low as possible, and c) the number of times the data accuracy
bounds need to be recomputed is as low as possible.
In this paper, we couple novel ideas with existing optimization
techniques to derive such an assignment. Specifically, we make the
following contributions: (i) Propose a novel technique that signif-
icantly reduces the number of times data accuracy bounds must
be recomputed; (ii) Show that a small increase in the number
of data refreshes can lead to a large reduction in the number of
recomputations; we introduce this as a tradeoff in our approach;
(iii) Give principled heuristics for addressing negative coefficient
polynomial queries where no known optimization techniques can
be used; we also prove that under many practically encountered
conditions our heuristics can be close to optimal; and (iv) Present
a detailed experimental evaluation demonstrating the efficacy of
our techniques in handling large number of polynomial queries.

I. INTRODUCTION

Applications of on-line monitoring belong to a wide spec-
trum: preventive monitoring to track unusual network activ-
ity, monitoring to exploit exchange disparities, critical health
monitoring, etc. Monitoring needs are usually expressed as
continuous queries over data that changes continuously and
unpredictably, e.g., network traffic information, stock prices
and sensor data. In this paper, we focus on a class of
continuous queries where a user is interested in the value
of a polynomial over many data items. This rich class of
queries, formally defined in Section I-A, covers a wide range
of applications like:
1. Financials: (a) In a global portfolio query, the user is
interested in stocks across exchanges in different countries.
In this case, the query posed will be:

L(Number of stocks of company i *

current stock price of company i in country j *
currency exchange rate of country j)

Here, both the stock price in foreign currency and the currency
exchange rate change continuously.

(b) In an arbitrage query, the user is interested in exploiting
the difference in the price of securities or foreign exchange in
different markets. For example:

(Amount of foreign exchange * [ [ buy price at
exchange i * currency exchange rate of country j

- [sell price at exchange k
* currency exchange rate of country t]

2. Monitoring Dynamic Physical Phenomena: Regularly
monitored physical phenomena often depend on the value of
polynomials. For example,
A disaster management group is interested in tracking an
(approximately circular) oil spill. Assuming that sensors track
points on perimeter of the spill, the centre of the circle (xo, y o)
can be approximated as the average of these points. Let
(xi , g I ) be a point on the perimeter. Then the query tracking
the area under the spill is: t((xi _ xo )2 + (M I l)2)j . Here
both (xo, Ljo) and (xI, I ) change continuously.

The data required for monitoring could be distributed
amongst many sources. User queries are posed at coordinators.
The sources refresh the coordinators with the data necessary to
continuously answer these queries. Since data changes rapidly,
the volume of data refreshes required to handle the queries is
high. Resource constraints like CPU/battery life at the sources,
underlying network capacity, etc., place a restriction on the
amount of data that can be sent to evaluate a user query.

Fortunately, users of rapidly changing data can tolerate a
certain amount of imprecision in the query results. The amount
of tolerable imprecision will vary from, for e.g., a fraction of a
cent to a few dollars, depending on the usage of the query. We
refer to the maximum imprecision that a user can tolerate in
a query value as a Query Accuracy Bound or QAB. Consider
a user query Q with an accuracy bound B at a coordinator C.
Let S be the virtual sourcel representing distributed sources
SI,... ,S. Let V(S, Q) and V(C, Q) denote the value of Q
at S and C, respectively, at time t. To maintain Q's accuracy
bound, we must have, at all times, IV(C, Q)- V(S, Q)I < B.

'We use this abstraction only for conceptual understanding and ease of
explanation.
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QAB: Query Accuracy Bound
DAB: Data Accuracy Bound
PQ: Non-linear Polynomial Query
PPQ: Positive-coefficient Polynomial Query
LAQ: Linear Aggregate Query
ddm: data dynamics model

Fig. 1. List of Acronyms

Typically, many queries will be assigned to a coordinator C.
We would like the data at C refreshed such that the accuracy
bounds of all the queries assigned to it are met. Our approach
assigns afilter or a Data Accuracy Bound (DAB) to the source
of each data item. The data accuracy bound, bx, is the tolerable
imprecision for data item x for C. If V(S,x) and V(C,x) are
the value of x at S and C respectively, then, to maintain this
DAB, we must have, at all times, IV(C,x)- V(S,x)I < bx.
We assume that the sources push data to C, such that the

DABs are maintained. For e.g., if the value of x last pushed
by source S to C is 5 and bx = 1, then S will next refresh C
when the value of x at S becomes < 4 or > 6.

A. Polynomial Queries (P:B)
Let sources SI,... , S serve data items {x1 ,x. These
could be individual data items like stock prices, aggregate
functions like frequency count or averages of streamed values
over a sliding window. In this paper, we focus on user queries
which are polynomials in multiple data items. We define a
polynomial query below.
A Polynomial Query (PQ) is a query where the user is

interested in the value of a polynomial, e.g., global portfolios,
volumes, areas, etc. A PQ can be written as:
WV (X1P1%X2c1 XTT' ) + W . .X,,nj* : B

Here, each wvi is a constant representing the weight attached
to the ith term in the polynomial; B is a constant representing
the QAB, B > 0; Pi, qj,... r are the exponents of the data
items, pi, qj,rj, xji, B C R. The degree of the polynomial is
the maximum of (pi + qi + . + ri) over all terms.
A Positive-coefficient Polynomial Query (PPQ) is a poly-

nomial query with all weights (coefficients) positive.
We refer to queries with degree 1 as linear aggregate

queries. In a Linear Aggregate Query (LAQ), the user is
interested in the value of a weighted sum of many data items
and is expressed as . v ixi: B. This class handles a variety
of queries like averages across data items, traffic monitoring
and network monitoring.
LAQs require simpler solutions than non-linear PQs and

hence we treat LAQs separately. Due to space constraints, we
are unable to present our work on LAQs here. This work
is available at [1]. In this paper, we focus on non-linear
polynomial queries, i.e., queries with degree greater than 1.

B. Problem Statement

Let sources S I, , S serve data items {x1, , x,.
Given a set G of PQs at a coordinator C, our goal is to assign
a DAB bx to the source of each data item x, such that the
following three conditions are met.

V(S, x) V(C,x)
V(S, y) V(S, Q) V(C, j) V(C, Q) Remarks

2, 2 4 2, 2 4
3, 2 6 3, 2 6 S pushes x to C

3.9, 2.9 11.31 3, 2 6 bx, by not valid
Query = xj: 5, bx = l, by = I

Fig. 2. DABs for PQs depend on current data values

Condition 1: For each data item x, if the value of x is within
bx at C then values of all the queries at C are within their
QABs. Formally, Vx, IV(C, x)- V(S, x) < bx

# VQCG, V(C, Q) - V(S, Q)I < BQ.
Condition 2: The number of refreshes sent from the sources
to C required to meet the QABs, is as low as possible.
Condition 3: The number of times the DABs need to be
recomputed is as low as possible.

Condition 1 ensures that in the absence of communication
and computation delays, the QABs of all queries will be met
at all times. However, since these delays are a reality, there
may be time intervals during which the QABs will not be met.
Hence, we would like a communication efficient assignment,
i.e., an assignment where the number of refreshes required to
be sent by the sources to C, is as low as possible (Condition
2). By reducing the number of refreshes, the load on the
network reduces, resulting in lower communication delays.
Further, for each refresh that C receives, C checks which QABs
will be violated and for those queries, sends the value of the
query result to the respective users. The lower the number of
refreshes at C, the lesser is the computational load on C and
the smaller the delay perceived by the user.

To motivate the need for Condition 3, consider a simple
example query as illustrated in Figure 2. Here, the user is
interested in the product of two data items, x and j, and the
QAB is 5, i.e., Q = x: 5. We need to calculate bx and b-,
the DABs for x and j respectively. Initially, let the value of x
and j at both the virtual source S and C be 2, i.e., V(C, x) =
V(S,x) = 2 and V(C, j) = V(S, j) = 2. Then the value of
the query: V(C, Q) = V(S, Q) = 2*2 = 4. S does not need
to push data to C as long as the query value > -1 and < 9,
i.e., the query validity interval is [-1, 9] at C.

Consider a DAB assignment bx = bM = 1. This is a valid
assignment. As long as x and -g do not change by 1, x-g does
not change by 5. Suppose x increases by 1 and S informs C
of this change. Then V(C, Q) = V(S, Q) = 2 * 3 = 6. Note
that now the DABs are no longer valid, i.e, they no longer
ensure that the QAB will be met. For instance, if V(S, x) were
to change from 3 to say 3.9, and V(S,j) were to change
from 2 to 2.9, S will not send any update to C, (0.9 < bx,
b), even though the change in query value at S, V(S, Q)
3.9 * 2.9 -6 = 5.31, is more than 5, the QAB.
The crucial fact to note here is that changes in the value of

data items may render a valid DAB assignment invalid. More
specifically, whenever the value of a data item x changes by
the DAB, and hence C receives an update for x, it will result
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in a recomputation of the DABs2. Each recomputation has a
cost associated with it. Apart from the actual computational
cost involved in a recomputation, it may typically also result
in some extra communication messages [2], [3], [4], [5] or
even a reorganization of the data dissemination network [6].
For instance, after each recomputation, some of the sources
have to be informed about the new DABs. Assuming a query
uses data items from in sources, after a query is recomputed,
in the worst case, a DAB-change message will be sent to
all in sources. For polynomial queries, this implies that a
data refresh message from one source may result in Tn DAB-
change messages - one to each source. A recomputation can
therefore be more expensive than a refresh. Hence, it is critical
to minimize not only the number of refreshes (Condition 2)
but also the number of DAB recomputations (Condition 3).

C. Contributions: Efficient solutions for Polynomial Queries

Finding DABs for non-linear queries is a difficult problem
[5], [7]. In this paper, we present efficient and practical
solutions for handling a rich class of non-linear queries, viz,
polynomial queries. We present an optimal solution for a
positive-coefficient polynomial query and two heuristics for
general polynomials, one of which is provably near-optimal
for an important subset.

The key factors which make such a solution possible are:
(i) identification that recomputations can be expensive and
should be reduced, (ii) a novel idea to reduce the number
of recomputations, and (iii) effective use of existing optimiza-
tion techniques to derive optimal and near optimal solutions,
wherever possible. Our contributions include:
An Optimal Solution to Minimize the Number of Refreshes
for a PPQ: Finding DABs for a PQ is simpler if (i) only
Conditions 1 and 2 (Section I-B) have to be satisfied, and
(ii) all coefficients of the polynomial are positive. We solve
this restricted problem, in Section III-A.1, in the following
manner: we first derive a necessary and sufficient condition
that individual DABs must satisfy so that the QAB is met
(Condition 1). To meet Condition 2, we need to estimate the
number of refreshes for a particular assignment. To do so,
we make assumptions on the way data changes and consider
two different data dynamics models (ddms) (i) data changes
monotonically at a uniform rate and (ii) data changes as a
random walk. These ddms have also been used earlier in [4],
[6], [8]. We make use of this estimate, and using geometric
programming techniques, arrive at a solution optimal in the
number of refreshes.
A Novel Dual-DAB Approach to Reduce the Number
of Recomputations for a PPQ: Addition of Condition 3
increases the complexity of the problem considerably. As
explained in Section I-B, every refresh arriving at a coordinator
leads to a recomputation. Hence, intuitively, to reduce the
number of recomputations, one should reduce the number of
refreshes. We propose a counter-intuitive approach in Section

2This complication does not surface for LAQs and hence they admit simpler
solutions.

III-A.2 - it actually increases the number of refreshes to reduce
the number of recomputations. The key idea in our approach
is to assign not one but two DABs for each data item, which
together enable us to meet Conditions 1, 2 and 3. It introduces
a tradeoff between the number of recomputations and the
number of refreshes leading to a large reduction in the number
of recomputations for only a slight increase in the number of
refreshes. This approach coupled with existing optimization
techniques gives a solution which is optimal in the total cost:
(number of refreshes + number of recomputations).
Effective Heuristics to Handle a General Polynomial: To
the best of our knowledge there is no efficient optimization
technique which can be used to find the optimal solution for
a general PQ, i.e., a polynomial with positive and negative
coefficients. In Section III-B, we propose two heuristics based
on the observation that a general polynomial can be written as
the difference of two positive-coefficient polynomials. Further-
more we prove that, under certain conditions, which we feel
occur in practice, the solution given by one of the heuristics
is close to the optimal solution.
Solutions for Multiple PPQs: The formulation for one PPQ
can be extended to handle multiple PPQs. However, because
this simple extension has some drawbacks, we propose an
alternate solution in Section IV.
Experimental Evaluation - Using Simulation and Planet-
Lab: Our results show that (i) our approach of having two
DABs coupled with optimization techniques gives significantly
superior results as compared to the use of single DABs, (ii)
geometric programming techniques are practical to use, and
(iii) to handle a large number ofPQs, a solution which reduces
the number of recomputations is a must and this is what we
provide. We have also implemented our solutions on a real-
world test-bed, PlanetLab, results from which corroborate the
findings from simulation studies (Section V).

D. Outline
Related work is discussed in Section II. Sections III and

IV discuss our approach for a single PQ and multiple PQs,
respectively. Section V presents the experimental evaluation
of our techniques and Section VI concludes with future work.

II. RELATED WORK

Algorithms to handle continuous approximate queries over
distributed sources have been a focus of many research works
[2], [4], [5], to name a few. [7] gives a comprehensive survey
of the various issues in handling queries over data streams.
The problem of assigning DABs, given QABs has been

addressed in many recent papers. The queries considered,
architectures and refresh model used, vary from paper to paper.
Data at a coordinator, C, can be refreshed either by (a) C
pulling data values from respective sources, at specific points
in time, or (b) sources pushing relevant new data values to C.
In [8], the authors use pull and focus on reducing the number
of refreshes for multiple LAQs over multiple data items by
using random walk ddm to calculate the next time to pull.
Pull-based schemes rely heavily on the accuracy of ddTns.
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Our approach uses push and guarantees that in a zero delay
network, the QABs will always be met. Though we use ddms
to estimate the number of refreshes, as shown Section V, our
reliance on the accuracy of the model is low.
In [9], the source calculates the DAB (precision interval) for
each refresh using a combination of push and pull. In [10],
Kalman Filters are used to model data changes at sources to
reduce the number of refreshes. Both these approaches do not
handle multiple queries over multiple data items.
Solutions described in [3], [4], [5], [11] use push. In [11],
the source cooperates with the users to periodically modify
the DABs based on the bandwidth available. Our focus is to
calculate the DABs based on QABs specified by the user.
In [4], an adaptive algorithm to handle single and multiple
LAQs is proposed, where periodically DABs are recalculated
and some of the sources are informed of the changed DABs.
In [3], a special LAQ, i.e., the sum of frequency counts, is
considered. The QAB is a function of the query value and two
algorithms are proposed to calculate DABs. However, both [3]
and [4] do not consider non-linear queries and the solutions
require frequent recomputations.
To the best of our knowledge, [5] is the first work to consider a
general class of non-linear queries. The problem considered in
the paper is: Given vectors vi,... ,vn at n different sources,
and any non-linear function on the weighted average of these
vectors, when does a change at a source imply that value
of the function is greater than a threshold? The solutions
presented use geometric techniques to reduce the number of
refreshes required. While the queries handled are more general
than ours, their techniques do not yield optimal solutions for
our problem (see Section V). The focus of our work is to
reduce not only the number of refreshes but also the number
of recomputations of DABs. Hence, we explicitly consider
the cost of recomputing the DABs, leading to very different
solutions. As we show in Section V, reducing just the number
of refreshes is not enough, if a large number of queries are
to be handled. Another key feature in our work is the explicit
use of the estimate of the rate of change of data, which helps
us obtain better solutions.
In [6], techniques are proposed to build a content dissemina-
tion network for dynamic data that preserves DABs. We use
the work of [6] to experimentally evaluate the performance of
our techniques on a network of distributed coordinators.

III. DERIVING DABs: SINGLE QUERY CASE

We describe our solution for a positive-coefficient polyno-
mial (PPQ) in Section III-A and that for a general PQ in
Section III-B.

A. A Positive-coefficient Polynomial Query
We formulate the problem of assigning DABs for a PPQ as a

geometric optimization problem. We now present our approach
for a simple PPQ.

1) Optimal Refresh Approach: Meeting Conditions ] and 2:
We explain our formulation for a PPQ using a simple global
portfolio query (Query l(a)) as an example: a query Q where

the user is interested in the product of two data items, Q =

(xj): B. Assume that Q is assigned to a coordinator C. We
proceed with the derivation of our formulation in a step-wise
manner, treating each condition at a time.

Sources: S, SI,... Sm Coordinator: C
Polynomial: P, PI, P2 Query: Q = P B
Data Items : xi, ,Xn,LJI .
Value of data item x at source S : V(S,x)
Value of data item x at C : V(C, x), Vx
Primary DAB for x: bx Secondary DAB for x: cx
Cost of a recomputation:
Rate of change of data item x: A,<

Fig. 3. List of Notations

To handle Condition 1, we first derive a necessary and
sufficient condition for the DABs for Q. Let Vx, Vj be the
current values of x, y at the virtual source S and coordinator
C3. Then the value of Q is VxVj at S and C. Let bx and bj be
the DABs for x and -g respectively. The maximum difference
in the query values at S and C will be when both x and -g
increase or both decrease. Now suppose that x increases by
bx and j increases by bM at S. Then, the value of Q at S is:
(Vx + bx)(V±+ b-y) = VxV- + Vxby + Vy by + bxby. To meet
Q's QAB, we need, VxV+Vxbj+Vbx+bxb-VxVj < B,

i.e., VxbM + V,bx + bxbM < B (1)

If x had decreased by bx and -g by b , then we would have
VxVAj- (Vx -bx) (V-jj- b-1) = Vxb, + V4bx -bxb, < B.
This is implied by Equation (1).

It is easy to see that Equation 1 is a necessary and sufficient
condition for a DAB assignment. Any DAB assignment which
satisfies the above condition is a feasible assignment. The
overheads involved in the dissemination of the data items will
depend on and vary with each assignment.
One of our goals is to minimize the number of refreshes

required at C per unit time. To know the number of refreshes
that a certain DAB might incur, we need to know how the
data changes. We assume two different data dynamics models
(i) data changes monotonically and (ii) data changes as a
random walk. In this section, we describe our formulation for
the monotonic data model. We extend this formulation to the
random walk model in Section III-A.5. Let k\j be the rate of
change of data item xi in unit time. Recall that xi is refreshed
when the value changes by bi. Then, for the monotonic data
model, the number of refreshes per unit time for xi, is /A

The total number of refreshes per unit time to meet the
DABs is then A +\ . Since we want to minimize the
number of refreshes, we can formulate the following non-
linear optimization problem, for Q, as:

TTn -\x+ b subject to Vxbj + Vjbx+ bxbj <B
This formulation satisfies Condition 1 and 2.
We see from Equation 1 that the DABs depend on the

current value of the data items. This means that each time x

3We use Vx instead of V(C, x) for brevity
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changes by b, or ij changes by b , we will need to recalculate
the DABs. If this is not done then we cannot guarantee
Condition 1, which is that the DABs ensure that the QABs will
be met. Since every refresh to C results in a recomputation,
a possible solution to reduce the number of recomputations
at C would be to reduce the number of refreshes further.
But our DAB calculation is already optimal in the number
of refreshes. Our solution described next, slightly increases
the number of refreshes to considerably reduce the number of
recomputations.

2) Dual DAB Approach: Reducing the Frequency of Re-
computations: We now propose a technique which (i) helps
us reduce the number of recomputations, (ii) indicates when
the next recomputation should occur, and (iii) guarantees that
between two recomputations, the DABs ensure that the QAB is
met. The technique introduces a tradeoff between the number
of recomputations and refreshes received at C, where the
number of recomputations is reduced at the cost of a small
increase in the number of refreshes.

Our idea is to assign two DABs to a data item x, namely,
(i) a smaller primary DAB which is used to evaluate the user
query and which ensures that the QAB is met, and,
(ii) a larger secondary DAB which defines the range of values
of x for which the primary DAB is valid, i.e., will ensure
query accuracy. When the value of x goes beyond this range,
the DABs have to be recomputed. For the query above, let the
primary DABs be bx and bM and the secondary DABs be cX
and c'. Then as long as the value of x is within Vx ± cX and
the value of j is within V, ± c,, the primary DABs are valid.
We explain the intuition of our approach with the help of the

example query x: 5. If k\x = A\ = 1, then optimal refresh
assignment is bx = bM = 1. This is the assignment discussed
in Figure 2. Now consider an assignment, shown in Figure 4,
where bx = bM = 0.5. Initially, the value of x and j at both
S and C is 2. As before x increases by 1 at S and S pushes
this change to C. The new values of x and -g at S and C are
now 3 and 2, respectively. Note that the DABs bx bM = 0.5
are still valid ((3 + 0.5) * (2 + 0.5) - 6 = 8.75 -6 = 2.5 < 5).
However, if we had done the optimal assignment, we would
have now recomputed the DABs (as explained in Section I).
Suppose x now changes to 3.5 and -g changes to 2.5. Notice
that the DABs are still valid.

The key insight is that by assigning more stringent DABs, we
can avoid recomputation over a larger range of data values.
However, more stringent DABs imply an increase in number
of refreshes. S will now send all changes > 0.5 instead of
sending changes > 1. In the example above, the primary DABs
are valid till x increases to 5.5, and j increases to 4.5, (5.5 +
0.48 * 4.5 + 0.48 = 29.78 - 24.75 > 5). Here, CX = (5.5-2)
3.5, c- = (4.5 -2) = 2.5 serve as the secondary DABs.

For a given set of primary DABs, one can have many
secondary DABs. In the example above, CX = 2.5, cM = 3.5
are also valid secondary DABs. The decrease in the number
of recomputations and the increase in the number of refreshes
will vary with each assignment. The critical question then is
how to choose the two DABs. We address this question now.

V(S,xL V(C,x)
V(S, y) V(S, Q) V(C, y) V(C, Q) bx, by

2, 2 4 2, 2 4 valid
3, 2 6 3, 2 6 valid

3.5, 2.5 8.75 3.5, 2.5 8.75 valid
3.9, 2.9 11.31 3.9, 2.9 11.31 valid
5.5, 4.5 24.75 5.5, 4.5 24.75 invalid

Query = xy: 5, bx = 0.5, by = 0.5

Fig. 4. Reducing the number of recomputations

Calculating Primary and Secondary DABs
Our solution is to incorporate the primary and secondary

DABs into the optimization formulation as follows.
The secondary DABs define the range of data values for

which the primary DABs are valid. This means that b, is
valid from V - c to Vx + cx. Hence, for the user query
(x): B, we need to satisfy:
(Vx + eX + bx ) (V + cm +b) (Vxce)(V ±+ c) < B

i.e., (Vx + cx)bM + (Vj + c )bx + bxbj < B (2)
and (Vx- ex)(Vj -cj)-(Vx-ex-bx)(VAj-cmj-b) < B

i.e., (Vx -cx)b + (VW c- )bx- bxb < B (3)
We can see that any assignment which satisfies Equation (2)
will also satisfy Equation 3. Equation (2) is also the necessary
and sufficient condition for the two DABs.

Since the secondary DABs define the range for primary
DABs, they should be larger than the primary DABs. This
gives us the additional constraints: CX > bx and c > b .
Assuming that the data changes monotonically, the number of
refreshes arriving at C per unit time due to the primary DABs
is: Ax + Aybx< b
The tradeoff between the number of recomputations and

number of refreshes is modelled through a constant L, W >
0. The computational cost of one recomputation, additional
communication or reorganizational overheads due to this re-
computation, etc., are approximated as W messages.
A recomputation occurs when the value of x at C changes

by more than Vx ± CX or the value of -g changes by more than
VM ± c- . The time between recomputations due to x is CX and
due to j is c. Hence, the number of recomputations, R, is
the maximum of X and

C,< Cy
We need to minimize both the number of refreshes arriving

at C and also the number of recomputations. Hence, the
objective function now becomes: /Ax + AY + i * R.bx bg
The optimization problem now becomes:

mTint +/ + * R) subject to

(Vx + cx)b'Y + (Vlj + cl )bx + bxblj < B

CX >bx; cM ~~~~~~~~~~~~~~~~~~~~~>b;A\X< R; Ay<cx > bx; C'Y -Y; cx C

This is a non-linear optimization problem which can be solved
by geometric programming techniques [12].

Note that the sources only need to be aware of the primary
DABs. The secondary DAB is required only at the coordinator
to check if a recomputation of the DABs is warranted.
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3) Calculation of t: The parameter t approximates the
sum total of all overheads of a recomputation as the number
of messages. The overheads are: (i) Actual computational
cost of recomputing, (ii) DAB-change messages sent to the
sources and (iii) Other miscellaneous costs such as cost of
reorganization, etc. These costs vary with the architecture used
hence we show how to compute t with this example: Consider
a data dissemination network [6]. Assume that the network has
5 sources and that a recomputation results in a reorganization
of the network. We estimate t as follows: Let the actual
cost of recomputation be nominal amounting to 0 messages.
After each recomputation, the sources need to be informed
about the new DABs, resulting in extra messages: Assuming
that all 5 sources are notified, this results in 5 messages.
Also, the recomputation results in a reorganization. Even if a
reorganization takes only 1 sec, for an average message delay
of 200 ms, this equates to 5 more messages, bringing the cost
of a recomputation(W) to 10 messages.
Effect of t: For larger t, the primary DABs will be more
stringent and the secondary DABs will be larger. This implies
that, as t increases, the range for which the primary DABs
are valid, increases, leading to fewer recomputations. It also
implies an increase in the number of refreshes at C.

4) Extending to General Global Portfolio Queries: A
global portfolio query is written as E wvixxj : B. The
formulation discussed in Section 111-A can be applied to each
term wvxixij in this query. Ensuring we assign only one
primary and secondary DAB to each data item, we arrive at
the following optimization formulation.

miLn L i+ * R subject to
bi

L- wVi[(Vx, + cx,)bxj + (Vxj + cxj )bx, + bx bxj I < B

Vx: CX > bx; K< R
cx

We can similarly derive the formulation for any PPQ.
Geometric programming techniques are powerful enough to
handle positive-coefficient polynomials with positive, negative
or fractional exponents [12].

5) Extending to the Random Walk Data Model: In Section
III-A, we discussed our formulation for the monotonic data
model. It is easy to extend our formulation to other ddTs. In
this section, we extend it to the random walk data model.
As derived in [4], for the random walk model, the number of

refreshes per unit time for data item xi is vi . The total number
2 ~ i

of refreshes is then E b. This changes the formulation to

mirtLE -+ - * R subject to

L vvi[(Vx. + cxj)b> + (VXj + cxj)bX +bXibX] < B
2

Vx: cX > bx; C2< R

B. A Polynomial Query with Positive and Negative Coefficients
Consider a general polynomial query (PQ) Q = x- uv: B.

In this query, we have a term with a negative coefficient,
viz, uv. Existence of this term increases the complexity of

the problem considerably: now the necessary and sufficient
condition for Q, and hence the constraints in the formulation
will have negative terms. Geometric optimization techniques
require the objective function and constraints to be positive-
coefficient polynomials and hence these techniques can no
longer be used for Q. In fact, to the best of our knowledge,
there is no known efficient technique which can be used to
obtain an optimal solution for Q. The best we can hope for
are solutions close to the optimal solution.

1) Key Observation and Definitions: We observe that a
polynomial P can be represented as the difference of two
positive-coefficient polynomials, P1 and P2, i.e., as P =

P1 -P2, where PI is a sub-polynomial of P containing
all positive coefficient terms and P2 is the sub-polynomial
containing all negative coefficient terms of P. This simple but
key observation leads to the two heuristics in Section III-B.2.
Definitions: Two polynomials PI, P2 are said to be indepen-
dent, if they have no data items in common. For example, if
PI = xig and P2 = uv, then PI and P2 are independent. If
however, P1 and P2 have at least one data item in common
then they are said to be dependent. For instance, if P1 = x2
and P2 = xL, then P1 and P2 are dependent.

2) Two Heuristics for a PQ (P:B): We now propose heuris-
tics Half and Half and Different Sum, to find DABs for a PQ.
Heuristic 1: Half and Half

Given P: B, we split P into two positive-coefficient sub-
polynomials P1 and P2 such that P = P1 -P2. We also split the
QAB uniformly and solve separately for P1: B2 and P2: B

For any data item, the DAB for coordinator C is the minimum
amongst the primary DABs calculated for P1 and P2.

It is easy to see that this heuristic ensures correctness. If
the value of P changes by more than B then this implies that
the value of either PI or P2 had changed by at least B

Dividing the bound equally between the two queries may
not be optimal. Finding an optimal division for the QAB is
a very complex problem in itself, depending on the sizes and
degrees of each polynomial, the current values of data items,
etc. As a result, we propose the next heuristic.
Heuristic 2: Different Sum
As before, we split P into PI and P2. However, instead of

solving for P, and P2 separately, in this heuristic, we find the
optimal solution for the PPQ: PI + P2: B.

This heuristic, though counter-intuitive, gives solutions
close to the optimal for independent polynomials, under certain
conditions. Before we discuss optimality issues, we first prove
that Different Sum ensures correctness. Let P, and P2 be any
two independent positive-coefficient polynomials. Consider
two queries: Q = P1 -P2: B and Q PI + P2: B. Then,

Claim 1: DABs which satisfy Q' also satisfy Q.
For simplicity, we prove this when PI = xig and P2 = uv.
Then Q =x- uv: B and Q =xg+uv: B.

Similar to Equation (2), the necessary and sufficient condi-
tion for the DABs for Q is:
(Vx+cxV+bx)(V +cj +b (Vu- c-bu)(v -cv-bv)

-((VX - CX1(V'J- Ci) + (Vut-CIL)(V,- c,)) < B
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i.e., (Vx + cx)b- + (Vy + c )bx + (Vu- cu)bv+
(Vv- bv)bu + bxb- bubv < B (4)

Similarly, after simplification, the condition for the DABs
for Q' is: (Vx + cx)b- + (Vy + c-y)bx + (Vu + cu)bv+

(Vv + cv)bu + bxby + bubv < B (5)
We can see that the terms that occur in the two inequalities are
the same, except in sign - some being negative in Equation (4).
Hence the lhs of Equation (4) is atmost that of Equation (5).
This implies that if the DABs satisfy Equation (5) they also
satisfy Equation (4). The proof for any two positive-coefficient
polynomials PI and P2 is similar and can be found in [1].
When does Different Sum give near-optimal solutions?
We now prove that when (i) the queries are independent

and (ii) the optimal DABs for P -P2 are small with respect
to the corresponding values of data items, then, the optimal
DABs of P1 + P2 are close to the optimal DABs of P -P2.

Let P1 and P2 be two independent polynomials. Let bi,
ci be the optimal primary and secondary DABs for every
data item xi in PI -P2. Let R be the optimal number of
recomputations for P -P2. Let ac be a constant, 0 < ac < 1
and d be the degree of P -P2. Let Vi be the value of data
item xi. Then we formally prove that

Claim 2: (A) If Vi, c > V8 cJ then bi(I - a),
C (I _ a), R are feasible for PI + P2, and (B) the total
cost of this solution for P -P2, under the monotonic4 data
model is, at most a factor of 1 worse than the optimal for
P -P2.
Due to space constraints, we are unable to present the proof
for Part A here. This non-trivial proof is available in [1].
Proof for part B: Let b1 ,... b, be the primary DABs,
R be the number of recomputations and t be the cost of
a recomputation for an optimal solution of P1 -P2. The
optimal value for objective function, for PI -P2, under the
assumption that data changes monotonically is E A' + fiR. Let
b,... b be the DABs and R' the number of recomputations
for an optimal solution for PI + P2. Then the optimal value
for objective function, for P1 + P2 is . bA + fiR'. From

part A, it follows that bi(1 c), ci(1( c) and 1R are
feasible for P1 + P2. Hence, L b + WtR < L b1(i ) +

WlR < l ' + AtR). Therefore, the value of the
objective function, if we use the optimal DABs for PI + P2,
is at most a factor 1 worse than the optimal for P -P2.

Clearly, the smaller the value of a, the better is the solution.
For example, consider the query x- uv: B. As long as
b , ci < 2, for each data item i, the solution given by PI +P2
is close to the optimal. In practice, the DABs are usually likely
to more stringent and we expect near optimal performance for
any PQ with independent sub-polynomials.

IV. MULTIPLE PQs

The formulation presented in Section 111-A has a natural
extension where multiple queries can be handled collectively.

4Under the random walk model, the solution is at most 2 worse
than the optimal.

Due to space constraints, we briefly describe this solution here.
For each data item, the primary DAB is the same across all
queries. The secondary DAB, however, depends on the query
and hence there are as many secondary DABs as the number
of <query, data item> pairs. Also each query has a different
number of recomputations, R. The objective function is the
sum of the number of messages due to the primary DABs and
the number of recomputations of each query (multiplied by
the cost of recomputation). We call this solution AAO or All
At Once. The detailed formulation is available in [1].

One of the drawbacks of this solution is that the number of
variables depends on the number of queries (as the secondary
DAB will be different for each data item in each query),
making it difficult for existing geometric solvers to handle
a large number of queries. Hence, we use the next approach.

Given multiple PQs at coordinator C, we solve for each
query independently, using the approach mentioned in Section
111-A. For each data item, we then assign the minimum primary
DAB across all queries, as the DAB for C. We call this
approach EQI or Each Query Independently.

V. EXPERIMENTAL EVALUATION
A. Experimental Methodology
An overview of the experimental methodology follows.

Details are given in [1].
Physical Topology: The network topology consists of 20
sources and 1 coordinator. The total number of data items
served by the sources is 100. For each data item, we use
real stock traces of roughly 3 hours (10000 secs) duration,
downloaded from http://finance.yahoo.com. The traces are
same as those used in [6]. The PlanetLab experiments are on
a topology of 4 sources and ] coordinator for a trace duration
of 4000 secs.
Delays: The communication delays are derived from a heavy
tailed Pareto [13] distribution giving a node-node delay of
around 100-120 ms. The computational delays at a coordinator,
C, are also derived using heavy tailed Pareto distributions. The
mean delay, required to check if a query value should be sent
to the user, is 4 ms and the mean delay to push the value to the
user is 1 ms. We also experimented with other communication
and computational delays. Similar delays are associated at a
source disseminating data to C.
Queries: PPQs are represented with a set of global portfolio
queries (Query l(a)) and PQs with set of arbitrage queries
(Query l(b)). We generate the queries using an 80-20 model.
The data items are divided into two groups, group 1 consisting
of 20% of the data items and group 2 consisting of the rest.
80% of the data items in each query belong to group 1. 20%
belong to group 2. On an average, each query requested 12-14
data items. The value of the weights is taken uniformly from
1 to 100. We assume that each query has an initial value to
start with in order to study the performance of the network in
steady-state. For PPQs and PQs, the QAB is set to 1% and
2% of the initial query value, respectively.
Solver: We use a well-known solver, CVXOPT [14]. The
Dual-DAB approach took about 40-70ms for a PPQ on a P4,
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2.66 Ghz machine. AAO took 600-750 ms for 10 PPQs.
Model of Data Dynamics: We experiment with two different
data models: (i) data changes monotonically and (ii) the data
changes as a random walk. For ease of experimentation,
the rate of change, _\j for a data item xi, is calculated as:
We estimate the current rate of change, A\ (t) by sampling
the traces at fixed intervals (1 min), and the value of A\i
used is the average of A\ (t) over the complete trace. Results
of others ways of calculating _\j are also reported in [1].
Unless mentioned otherwise, the results presented are for the
monotonic data model.
Cost of recomputation: The cost of recomputation, t, ap-
proximates the overheads of a recomputation in terms of the
number of messages. Since these costs vary with each query
and the architecture used, (Section III-A.3), we experiment
with different values of t = 1, 2, 5, 10, and 20. For each
experiment, t is assumed to be constant. W 1 implies
that the cost of a recomputation has been approximated by
1 communication message.
Comparison with related work: The work in [5] can be
adapted to calculate DABs for polynomial queries. Since the
focus of the paper is on reducing the number of refreshes,
we compare this work with our Optimal Refresh algorithm
(Section III-A). Consider a function f = XJ and a threshold4
B = 50. Current values of x and j are 40 and 20 respectively.
Then the DABs calculated by [5] will be 3.16625 and 2.5
respectively. The assignment given by Optimal Refresh is
3.87 and 2.79 (assuming -\x = A\j). As the assignment by
the Optimal Refresh algorithm has less stringent DABs, the
number of refreshes will be smaller for the Optimal Refresh
algorithm. The reason that [5] is sub-optimal is that instead of
one necessary and sufficient condition (Equation 1) we have to
solve n sufficient conditions - one per data item. This results
in more stringent DABs.
Metrics: We use four different metrics to study the perfor-
mance of our algorithms.
1. Fidelity: This is the degree to which a query's QAB is met. It
is measured as the total length of time for which the bounds
are met, normalized by the total length of the observations.
The loss in fidelity is simply (100% -fidelity). The loss in
fidelity shown is the mean loss across all queries.
2. Number of refreshes: This is the total number of refresh
messages which arrive at a coordinator.
3. Number of recomputations: This is the total number of
recomputations across all queries at a coordinator.
4. Total cost: This is the total cost in terms of the number
of messages and is given by: (Number of refreshes) +( *
(Number of recomputations)).

B. Performance Results

1) Results for PPQs:
Base Results: We evaluate our Dual-DAB approach (Section
III-A.4) and Optimal Refresh approach (Section III-A.1 on
a set of global portfolio queries (L aixixj: B. In Optimal
Refresh, the DABs calculated for each query are optimal in
only the number of refreshes to the coordinator. Once the

DABs are calculated for each query (using either Dual-DAB
or Optimal Refresh, the coordinator asks for each data item at
the minimum DAB across all queries (EQI - Section IV).

Figure 5 gives the performance of Dual-DAB algorithm
for different costs of recomputations, t, on PlanetLab. From
Figure 5(a), we see that the Dual DAB approach results in a
substantial reduction in the total ofnumber of recomputations,
across all values of t. Even when the cost of a recomputation
is approximated by only 1 message (i= 1), we see that the
number of recomputations reduce by more than a factor of 9
as compared to Optimal Refresh. For larger values of t, the
number of recomputations reduces even further.

Our approach introduces a tradeoff between the number of
recomputations and the number of refreshes. Figure 5(b) shows
the actual number of refreshes that arrive at a coordinator. The
numbers do not include any overhead messages which might
result due to recomputations. We can see that though there is
an increase in the number of refreshes for t > 1 as compared
to Optimal Refresh, this increase is small compared to the
reduction in the number of recomputations.

Figure 5(c) shows the trend5 for loss in fidelity. As expected,
the loss in fidelity is substantially lower for our approach. The
lower the number of recomputations, the lower is the load on
the coordinator and the lesser are the messages in the network,
leading to better fidelity for the user.
The results shown in Figure 5 follow the same trend as

results from simulation studies. The number of recomputations
were higher in our PlanetLab evaluations. We believe that this
is due to high variability in the communication and computa-
tional delays experienced by our PlanetLab experiments.
Effect of different data dynamics models: We next wanted
to see the effect of using different data dynamics models on
our approach. We ran our simulations for the random walk
data model (Section III-A.S). Due to the nature of the objec-
tive function ( A2 ), the DABs for random walk were less
stringent than those for monotonic data model. This resulted
in more recomputations and fewer refreshes for random walk
model as seen in Figure 6(a) and (b). Figure 6 also shows the
effect of using rate of change on our evaluations. We calculated
the DABs without using any rate of change information, i.e.,
A\j = 1. These results are represented by curves labelled LI.
We observed a higher number of both recomputations and
refreshes, for -\i = 1, indicating that using information on
the rate of change helps us obtain better solutions.
Figure 6(c) gives the total cost in terms of the number of
messages for monotonic, random walk and A\ = 1. As t

increases, the total cost for the random walk model and A\ = 1
is higher. This increase is however much less as compared to
the total cost of Optimal Refresh. For instance, assuming that
the cost of a recomputation is 5 messages, the total cost for
Optimal Refresh (not shown) will be > 300000 which is at
least 6 times more than the total cost of LI for the same cost
of recomputation. This indicates that the Dual DAB approach

5Note that, since the experiments were run on PlanetLab, we faced different
delay conditions on each run. Hence, figures here are only an indication the
trends seen in the loss in fidelity across different runs.
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is superior to Optimal Refresh, independent of data dynamics
model and the actual objective function used.
Effect of Varying Delays: We ran our experiments for dif-
ferent delay conditions. We varied the node-node delays from
approximately 30 ms to 500 ms. As the delays increased, we
observed a small increase in the loss in fidelity. For Optimal
Refresh, we also observed an small increase in the number of
recomputations (< 0.5%). We also noticed this phenomenon
when we increased the computational delays by a factor of 5.
Performance of AAO and EQI: Since we evaluate the DABs
for each query independently, the resultant DABs will be
sub-optimal for multiple queries. Hence, we compared the
performance of EQI with the globally optimal algorithm, AAO
(Section IV), for a small number of queries (10). In AAO, the
primary DAB is the same across all queries and the secondary
DAB is different for every <query, data item> pair. So, we
compared EQI with the following approach: The DABs were
calculated periodically every T seconds using AAO. Between
two time periods, whenever a secondary DAB of a query was
violated, the Dual DAB approach was used to evaluate the new
DABs for that query, and the minimum DAB across all queries
was the DAB for the coordinator. Curves marked in Figure
7 with AAO-T indicate this approach. Note that we included
each AAO recomputation in the number of recomputations
and though AAO is more computationally expensive, the same
values of t were used for ease of comparison.
As expected, the primary DABs set by AAO-T were less
stringent than those set by EQI resulting in fewer refreshes
and more recomputations as compared to EQI as shown in
Figure 7(a) and (b). We also observed that as T (period ofAAO
recomputation) increases, the effect of changing the DABs

for each query independently affects performance, resulting
in a higher number of refreshes for various AAO-T curves for
the same value of t. This effect however, is mitigated when
T > 600 and t > 5. The reason for this is: For larger t, the
validity range given by secondary DABs is larger resulting
in fewer per-query recomputations. This implies the bounds
set by AAO are valid for a larger period reducing the overall
number of refreshes required. Hence, we can see that for the
curve marked AAO-1500, the number of refreshes actually
reduce with increasing t. Figure 7(c) shows the total cost in
terms of the number of messages for EQI and AAO. We see
that AAO-30 shows a high total cost reaffirming the fact that
frequent recomputations should be reduced. We also see the
performance of EQI is comparable to AAO and hence can be
used in practice.

2) General PQs - Arbitrage Queries: In Figures 8 (a) and
(b), we compare the performance of Half and Half (HH) and
Different Sum (DS) of Section III-B. Figure 8(a) shows the
results for a set of independent polynomials, P -P2 < B
where PI = E xiji and P2 = E Ujvj. The results indicate
that, as the number of queries increase, the number of recom-
putations is lower for DS as compared to HH. We found that
the number of refreshes were marginally higher (< 1%) in
DS. We then compared the performance of HH and DS for
dependent polynomials. Here the queries were of the same
form as above, except that PI and P2 had data items in
common. Here again we see that DS performs better HH as
shown in Figure 8(b). The experimental results indicate that
DS not only performs well on independent polynomials but
also for dependent polynomials. Hence DS is our choice for
general polynomials.
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3) Results on a Network: Figure 8(c) shows our results
for PPQs on a data dissemination network consisting of 10
coordinators and 2 sources built using the work in [6]. Number
of recomputations for WSDAB for 10,000 queries was very

high, 604735, reaffirming the fact that for large number of
PQs, an approach that reduces the number of recomputations
is absolutely essential.

VI. CONCLUSIONS

We propose algorithms to calculate DABs, given accuracy

bounds associated with a set of polynomial queries over

dynamic data. To reduce the overall cost of meeting QABs, we

propose a novel idea for a PPQ which helps in substantially
reducing the number of recomputations for a small increase in
the number of refreshes. We also extend the use of geometric
programming techniques for general polynomials. Our exper-

imental results show that
1. It is essential to reduce the number of recomputations when
a large number of polynomial queries are to be handled.
2. The reliance of our techniques on the ddm is low. As long
as we make a reasonable assumption about the data dynamics,
our approach gives a substantial reduction in the overall cost

of handling polynomial queries.
We have also deployed our algorithms on PlanetLab. The

results from our PlanetLab evaluations corroborate the trends
observed with emulations.

As future work, we would like to extend our work to handle
other kinds of non-linear queries, entity based queries [15] and

also exploit possible correlation between data [16].
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