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ABSTRACT

Emerging large-scale monitoring applications rely on continuous

tracking of complex data-analysis queries over collections of mas-

sive, physically-distributed data streams. Thus, in addition to the

space- and time-efficiency requirements of conventional stream pro-

cessing (at each remote monitor site), effective solutions also need

to guarantee communication efficiency (over the underlying com-

munication network). The complexity of the monitored query adds

to the difficulty of the problem — this is especially true for non-

linear queries (e.g., joins), where no obvious solutions exist for

distributing the monitor condition across sites. The recently pro-

posed geometric method offers a generic methodology for split-

ting an arbitrary (non-linear) global threshold-monitoring task into

a collection of local site constraints; still, the approach relies on

maintaining the complete stream(s) at each site, thus raising seri-

ous efficiency concerns for massive data streams. In this paper,

we propose novel algorithms for efficiently tracking a broad class

of complex aggregate queries in such distributed-streams settings.

Our tracking schemes rely on a novel combination of the geomet-

ric method with compact sketch summaries of local data streams,

and maintain approximate answers with provable error guarantees,

while optimizing space and processing costs at each remote site

and communication cost across the network. One of our key tech-

nical insights for the effective use of the geometric method lies

in exploiting a much lower-dimensional space for monitoring the

sketch-based estimation query. Due to the complex, highly non-

linear nature of these estimates, efficiently monitoring the local ge-

ometric constraints poses challenging algorithmic issues for which

we propose novel solutions. Experimental results on real-life data

streams verify the effectiveness of our approach.

1. INTRODUCTION
Traditional data-management systems are typically built on a

pull-based paradigm, where users issue one-shot queries to static

data sets residing on disk, and the system processes these queries

and returns their results. Recent years, however, have witnessed

the emergence of a new class of large-scale event monitoring ap-

plications, that require the ability to efficiently process continuous,
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high-volume streams of data in real time. Examples include moni-

toring systems for IP and sensor networks, real-time analysis tools

for financial data streams, and event and operations monitoring ap-

plications for enterprise clouds and data centers. As both the scale

of today’s networked systems, and the volumes and rates of the as-

sociated data streams continue to increase with no bound in sight,

algorithms and tools for effectively analyzing them are becoming

an important research mandate.

Large-scale stream processing applications rely on continuous,

event-driven monitoring, that is, real-time tracking of measurements

and events, rather than one-shot answers to sporadic queries. Fur-

thermore, the vast majority of these applications are inherently dis-

tributed, with several remote monitor sites observing their local,

high-speed data streams and exchanging information through a com-

munication network. This distribution of the data naturally implies

critical communication constraints that typically prohibit central-

izing all the streaming data, due to either the huge volume of the

data (e.g., in IP-network monitoring, where the massive amounts of

collected utilization and traffic information can overwhelm the pro-

duction IP network [12]), or power and bandwidth restrictions (e.g.,

in wireless sensornets, where communication is the key determi-

nant of sensor battery life [26]). Finally, an important requirement

of large-scale event monitoring is the effective support for track-

ing complex, holistic queries that provide a global view of the data

by combining and correlating information across the collection of

remote monitor sites. For instance, tracking aggregates over the

result of a distributed join (the “workhorse” operator for correlat-

ing data from different tables in relational databases) can provide

unique, real-time insights into the workings of a large-scale dis-

tributed system, including system-wide correlations and potential

anomalies [7]. Monitoring the precise value of such holistic queries

without continuously centralizing all the data seems hopeless; luck-

ily, when tracking statistical behavior and patters in large scale sys-

tems, approximate answers (with reasonable approximation error

guarantees) are typically sufficient. This often allows algorithms

to effectively tradeoff efficiency with approximation quality (e.g.,

using sketch-based stream approximations [7]).

Given the prohibitive cost of data centralization, it is clear that

realizing sophisticated, large-scale distributed data-stream analy-

sis tools must rely on novel algorithmic paradigms for process-

ing local streams of data in situ (i.e., locally at the sites where

the data is observed). This, of course, implies the need for in-

telligently decomposing a (possibly complex) global data-analysis

and monitoring query into a collection of “safe” local queries that

can be tracked independently at each site (without communica-

tion), while guaranteeing correctness for the global monitoring op-

eration. This decomposition process can enable truly distributed,

event-driven processing of real-time streaming data, using a push-

937



based paradigm, where sites monitor their local queries and com-

municate only when some local query constraints are violated [7,

31]. Nevertheless, effectively decomposing a complex, holistic

query over the global collections of streams into such local con-

straints is far from straightforward, especially in the case of non-

linear queries (e.g., joins) [31].

Prior Work. The bulk of work on data-stream processing has fo-

cused on developing space-efficient, one-pass algorithms for per-

forming a wide range of centralized, one-shot computations on

massive data streams; examples include computing quantiles [21],

estimating distinct values [18] and set-expression cardinalities [16],

counting frequent elements (i.e., “heavy hitters”) [4, 10, 28], ap-

proximating large Haar-wavelet coefficients [20], and estimating

join sizes and stream norms [1, 2, 15]. As already mentioned,

all the above methods work in a centralized, one-shot setting and,

therefore, do not consider communication-efficiency issues. Other

work has proposed methods that carefully optimize site communi-

cation costs for approximating different queries in a distributed set-

ting, including quantiles [22] and heavy hitters [27]; however, the

underlying assumption is that the computation is triggered either

periodically or in response to a one-shot request. Such techniques

are not immediately applicable for continuous-monitoring, where

the goal is to continuously provide real-time, guaranteed-quality

estimates over a distributed collection of streams. Morphing such

one-shot solutions to continuous problems entails propagating each

change and recomputing the solutions which is communication in-

efficient, or involves periodic updates and other heuristics that can

no longer provide real-time estimation guarantees.

Monitoring distributed data streams has attracted substantial re-

search interest in recent years [6, 29]. Early work has looked at

the monitoring of single values, and building appropriate models

and filters to avoid propagating updates if these are insignificant

compared to the value of a simple aggregate (e.g., to the SUM of

the distributed values). [30] proposes a scheme based on “adaptive

filters” — that is, bounds around the value of distributed variables,

which shrink or grow in response to relative stability or variability,

while ensuring that the total uncertainty in the bounds is at most a

user-specified bound. [23] proposes building a Kalman Filter for

individual values, and only propagating an update in a value if it

falls more than δ away from the predicted value. The BBQ sys-

tem [14] builds a dynamic, multi-dimensional probabilistic model

of a set of distributed sensor readings to drive acquisitional query

processing; this was later extended to the continuous case in the

Ken system [5]. A common aspect of all these earlier works is that

they typically consider only a small number of monitored values

per site, and assume that it is feasible to locally monitor and/or

build a model for each such value. In contrast, our problem setup

is much more complex, as each resource-limited site monitors a

streaming distribution of a large number of values and cannot af-

ford to explicitly capture or model each value separately.

Closest in spirit to our work are the results of [3] and [13], as

well as our work on tracking distributed quantiles [8] and join ag-

gregates [7]. All these efforts explicitly consider the tradeoff be-

tween accuracy and communication for monitoring a class of con-

tinuous queries over distributed streams. With the exception of [7],

these earlier papers focus solely on a narrow class of distributed-

monitoring queries (e.g., top-k values or one-dimensional quan-

tiles), resulting in special-purpose solutions applicable only to the

specific form of queries at hand. More recently, [25, 31] have pro-

posed an approach for efficiently monitoring the value of a general

function/query over distributed data relative to a given threshold.

Their solution relies on interesting geometric arguments for break-

ing up a global threshold condition on a function into “safe” local

conditions that can be checked locally at each site. Still, [25, 31] fo-

cus on monitoring a distributed trigger condition rather than a dis-

tributed query result with approximation-error guarantees; perhaps

more importantly, they assume that the full state of the stream can

be maintained at both the remote sites and the coordinator. [7] con-

siders monitoring the same class of sketch-based query estimates

as we do. Their proposed approach is again purpose-built for the

specific type of queries; furthermore, as our experimental results

show, the effective combination of the generic geometric monitor-

ing method of [25, 31] and sketch-based query estimates (as pro-

posed in this paper) can give significant performance benefits over

the approach in [7].1

Our Contributions. In this paper, we propose novel algorithmic

techniques for efficiently tracking sketch-based approximations for

a broad class of complex aggregate queries over massive, distributed

data streams. Our tracking protocols are based on a novel combina-

tion of the geometric method of Sharfman et al. [25, 31] for mon-

itoring general threshold conditions over distributed streams and

AMS sketch estimators for querying massive streaming data [1,

2, 15]. The effective incorporation of sketching techniques sig-

nificantly expands the scope of the original geometric method, al-

lowing it to efficiently track a broad class of complex queries over

massive, high-dimensional distributed data streams with provable

error guarantees. More specifically, we focus on the class of stream

queries supported by AMS sketching tools, including general in-

ner products (i.e., join aggregates), as well as the special cases

of L2-norms (i.e., self-join sizes) and range aggregates (e.g., for

tracking quantiles, histograms, wavelets, and heavy-hitters over the

streams) [7]. One of our key technical insights is that, by exploiting

properties of AMS sketches, our algorithms can perform highly-

efficient geometric monitoring in a much lower-dimensional space.

Another major technical challenge lies in effectively dealing with

the highly non-linear median operator (that is required for esti-

mation over AMS sketches) in the context of geometric function

monitoring. We propose novel geometric algorithms for tracking

medians computed over AMS sketches of the streams for different

types of distributed stream queries of high practical interest. Our

experimental study with real-life data sets demonstrates the prac-

tical benefits of our approach, showing consistent gains of up to

35% in terms of total communication cost compared to the current

state-of-the-art method [7]; furthermore, our techniques demon-

strate even more impressive benefits (of over 100%) when focusing

on the communication costs of data (i.e., sketch) shipping in the

system.

Roadmap. The remainder of this paper is organized as follows.

Section 2 discusses background material on distributed streaming,

sketches, and the geometric method. In Section 3, we present our

novel geometric monitoring schemes for sketch-based approximate

query tracking. Section 4 presents the results of our experimental

study. Finally, we conclude the paper and discuss future directions

in Section 5.

2. PRELIMINARIES AND PROBLEM SETUP

System Architecture. We consider a distributed-computing envi-

ronment, comprising a collection of k remote sites and a designated

1Note that [7] also proposes the idea of using prediction models
for local data streams, which is orthogonal to the work presented in
this paper. In fact, the application of prediction models within the
geometric monitoring method has already been explored in a recent
paper [17].
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Figure 1: Distributed stream processing architecture.

coordinator site. Streams of data updates arrive continuously at re-

mote sites, while the coordinator site is responsible for generating

approximate answers to (possibly, continuous) user queries posed

over the unions of remotely-observed streams (across all sites). Fol-

lowing earlier work in the area [3, 7, 8, 13, 30], our distributed

stream-processing model does not allow direct communication be-

tween remote sites; instead, as illustrated in Figure 1, a remote site

exchanges messages only with the coordinator, providing it with

state information on its (locally-observed) streams. Note that such

a hierarchical processing model is, in fact, representative of a large

class of applications, including network monitoring where a central

Network Operations Center (NOC) is responsible for processing

network traffic statistics (e.g., link bandwidth utilization, IP source-

destination byte counts) collected at switches, routers, and/or Ele-

ment Management Systems (EMSs) distributed across the network.

Each remote site j ∈ {1, . . . , k} observes (possibly, several) lo-

cal update streams that incrementally render a local statistics vector

vj capturing the current local state of the observed stream(s) at site

j. As an example, in the case of IP routers monitoring the number

of TCP and UDP packets exchanged between source and destina-

tion IP addresses, the local statistics vector vj has 2 × 264 entries

capturing the up-to-date frequencies for specific (source, destina-

tion) pairs observed in TCP and UDP packets routed through router

j. (For instance, the first (last) 264 entries of vj could be used for

TCP (respectively, UDP) packet frequencies.) All local statistics

vectors vj in our distributed streaming architecture change dynam-

ically over time — when necessary, we make this dependence ex-

plicit, using vj(t) to denote the state of the vector at time t (assum-

ing a consistent notion of “global time” in our distributed system).

The unqualified notation vj typically refers to the current state of

the local statistics vector.

We define the global statistics vector v of our distributed stream(s)

as any weighted average (i.e., convex combination) of the local

statistics vectors {vj}; that is, v =
∑k

j=1 λjvj , where
∑

j
λj = 1

and λj ≥ 0 for all j. (Again, to simplify notation, we typically omit

the explicit dependence on time when referring to the current global

vector.) Our focus is on the problem of effectively answering user

queries (or, functions) over the global statistics vector at the coor-

dinator site. Rather than one-time query/function evaluation, we

assume a continuous-querying environment which implies that the

coordinator needs to continuously maintain (or, track) the answers

to queries as the local update streams vj evolve at individual re-

mote sites. There are two defining characteristics of our problem

setup that raise difficult algorithmic challenges for our query track-

ing problems:

• The distributed nature and large volumes of local streaming data

imply important communication and space/time efficiency concerns.

Naı̈ve schemes that accurately track query answers by forcing re-

mote sites to ship every remote stream update to the coordinator are

clearly impractical, since they can impose an inordinate burden on

the underlying communication infrastructure (especially, for high-

rate data streams and large numbers of remote sites). Furthermore,

the voluminous nature of the local data streams implies that effec-

tive streaming tools are needed at the remote sites in order to man-

age the streaming local statistics vectors in sublinear space/time. A

main part of our approach is to adopt the paradigm of continuous

tracking of approximate query answers at the coordinator site with

strong guarantees on the quality of the approximation. This allows

our schemes to effectively trade-off space/time/communication ef-

ficiency and query-approximation accuracy in a precise, quantita-

tive manner.

•General, non-linear queries/functions imply fundamental and dif-

ficult challenges for distributed monitoring. For the case of linear

functions, a number of approaches have been proposed that rely

on the key idea of allocating appropriate “slacks” to the remote

sites based on their locally-observed function values (e.g., [3, 24,

30]). Unfortunately, it is not difficult to find examples of simple

non-linear functions on one-dimensional data, where it is basi-

cally impossible to make any assumptions about the value of the

global function based on the function values observed locally at

the sites [31]. This renders conventional slack-allocation schemes

inapplicable in our setting.

As a concrete example of complex function tracking, consider

the aforementioned global vector v = 〈t,u〉 of TCP and UDP

packet frequencies observed over a collection of IP routers. where

t, u are the subvectors of v corresponding to TCP and UDP traf-

fic, respectively. Tracking the (non-linear) inner-product function

f(v) = t · u =
∑

i
t[i]u[i] (i.e., the size of the join of the two

traffic distributions over (source, destination)) can allow the NOC

to effectively monitor the strength of the correlation across the two

types of traffic in the underlying set of routers. Clearly, simple

slack-allocation techniques [3, 24, 30] cannot be applied here.

AMS Stream Sketches. Techniques based on small-space pseudo-

random sketch summaries of the data have proved to be very ef-

fective tools for dealing with massive, rapid-rate data streams in

centralized settings [1, 2, 11, 15, 20]. The key idea in such sketch-

ing techniques is to represent a streaming frequency vector v using

a much smaller (typically, randomized) sketch vector (denoted by

sk(v)) that (1) can be easily maintained as the updates incremen-

tally rendering v are streaming by, and (2) provide probabilistic

guarantees for the quality of the data approximation. The widely

used AMS sketch (proposed by Alon, Matias, and Szegedy in their

seminal paper [2]) defines ith sketch entry sk(v)[i] as the random

variable
∑

k
v[k] · ξi[k], where {ξi} is a family of four-wise inde-

pendent binary random variables uniformly distributed in {−1,+1}
(with mutually-independent families used across different entries

of the sketch). The key here is that, using appropriate pseudo-

random hash functions, each such family can be efficiently con-

structed on-line in small (logarithmic) space [2]. Note that, by con-

struction, each entry of sk(v) is essentially a randomized linear

projection (i.e., an inner product) of the v vector (using the corre-

sponding ξ family), that can be easily maintained (using a simple

counter) over the input update stream. Another important property

is the linearity of AMS sketches: Given two “parallel” sketches

(built using the same ξ families) sk(v1) and sk(v2), the sketch of

the union of the two underlying streams (i.e., the streaming vector

v1 + v2) is simply the component-wise sum of their sketches; that

is, sk(v1 + v2) = sk(v1)+ sk(v2). This linearity makes such

sketches particularly useful in distributed streaming settings [7].

The following theorem summarizes some of the basic estima-

tion properties of AMS sketches for (centralized) stream query pro-

cessing. (Throughout, the notation x ∈ (y ± z) is equivalent to

|x− y| ≤ |z|.) We use fAMS() to denote the standard AMS estima-

tor function, involving both averaging and median-selection opera-
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tions over the components of the sketch-vector inner product [1, 2].

Formally, each sketch vector can be conceptually viewed as a two-

dimensional n ×m array, where n = O( 1
ǫ2
), m = O(log(1/δ))

and ǫ, 1 − δ denote the desired bounds on error and probabilistic

confidence (respectively), and the AMS estimator function is de-

fined as:

fAMS(sk(v), sk(u)) = median
i=1,...,m

{ 1
n

n
∑

l=1

sk(v)[l, i] · sk(u)[l, i]}.

THEOREM 2.1 ([1, 2]). Let sk(v) and sk(u) denote two par-

allel sketches comprising O( 1
ǫ2

log(1/δ)) counters, built over the

streams v and u. Then, with probability at least 1−δ, fAMS(sk(v),
sk(u)) ∈ (v · u± ǫ‖v‖‖u‖). The processing time required to

maintain each sketch is O( 1
ǫ2

log(1/δ)) per update.

Thus, AMS sketch estimators can effectively approximate inner-

product queries v · u =
∑

i
v[i] · u[i] over streaming data vectors

and tensors. Such inner products naturally map to join and multi-

join aggregates when the the vectors/tensors capture the frequency

distribution of the underlying join attribute(s) [15]. Furthermore,

they can capture several other interesting query classes, including

range and quantile queries [19], heavy hitters and top-k queries [4],

and approximate histogram and wavelet representations [9, 20, 32].

An interesting special case is that of the (squared) L2 norm (or,

self-join) query (i.e., u = v): Theorem 2.1 implies that the AMS

estimator fAMS(sk(v), sk(v)) (or, simply fAMS(sk(v))) is within

ǫ relative error of the true squared L2 norm ‖v‖2 =
∑

k
(v[k])2;

that is, fAMS(sk(v)) ∈ (1 ± ǫ)‖v‖2. To provide ǫ relative-error

guarantees for the general inner-product query v · u, Theorem 2.1

can be applied with error bound ǫ′ = ǫ(v · u)/(‖v‖‖u‖), giv-

ing a total sketching space requirement of O( ‖v‖
2‖u‖2

ǫ2(v·u)2
log(1/δ))

counters [1].

A drawback of AMS sketches is that every streaming update

must “touch” every component of the sketch vector (to update the

corresponding randomized linear projection). This can be problem-

atic for massive, rapid-rate data streams, especially when a tight

error guarantee ǫ is required. The Fast-AMS sketch [7] solves this

problem by guaranteeing logarithmic-time (i.e., O(log(1/δ))) sketch-

update costs, while offering the same space/accuracy tradeoff as the

basic AMS sketch (through a more careful analysis) [7]. (Our im-

plementation in Section 4 employs the Fast-AMS variant.)

The Geometric Method. Sharfman et al. [31] consider the fun-

damental problem of distributed threshold monitoring; that is, de-

termine whether f(v) < τ or f(v) > τ , for a given (general)

function f() over the global statistics vector and a fixed threshold

τ . Their key idea is that, since it is generally impossible to connect

the locally-observed values of f() to the global value f(v), one can

employ geometric arguments to monitor the domain (rather than the

range) of the monitored function f(). More specifically, assume

that at any point in time, each site j has informed the coordinator

of some prior state of its local vector v
p
j ; thus, the coordinator has

an estimated global vector e = vp =
∑k

j=1 λjv
p
j . Clearly, the

updates arriving at sites can cause the local vectors vj to drift too

far from their previously reported values v
p
j , possibly leading to a

violation of the τ threshold. Let ∆vj = vj − v
p
j denote the local

delta vector (due to updates) at site j, and let uj = e + ∆vj be

the drift vector from the previously reported estimate at site j. We

can then express the current global statistics vector v in terms of

the drift vectors:

v =
k∑

j=1

λj(v
p
j +∆vj) = e+

k∑

j=1

λj∆vj =
k∑

j=1

λj(e+∆vj).
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Figure 2: Estimate vector e, delta vectors ∆vj (arrows out of e),

convex hull enclosing the current global vector v (dotted outline),

and bounding balls B(e+ 1
2
∆vj ,

1
2
‖∆vj‖).

That is, the current global vector is a convex combination of drift

vectors and, thus, guaranteed to lie somewhere within the convex

hull of the delta vectors around e. Figure 2 depicts an example in

d = 2 dimensions. The current value of the global statistics vector

lies somewhere within the shaded convex-hull region; thus, as long

as the convex hull does not overlap the inadmissible region (i.e., the

region {v ∈ R
2 : f(v) > τ} in Figure 2), we can guarantee that

the threshold has not been violated (i.e., f(v) ≤ τ)).
The problem, of course, is that the ∆vj’s are spread across the

sites and, thus, the above condition cannot be checked locally. To

transform the global condition into a local constraint, we place a d-

dimensional bounding ball B(c, r) around each local delta vector,

of radius r = 1
2
‖∆vj‖ and centered at c = e + 1

2
∆vj (see Fig-

ure 2). It can be shown that (in any dimensionality d) the union

of all these balls completely covers the convex hull of the drift

vectors [31]. This observation effectively reduces the problem of

monitoring the global statistics vector to the local problem of each

remote site monitoring the ball around its local delta vector.

More specifically, given the monitored function f() and thresh-

old τ , we can partition the d-dimensional space into two sets V =
{v : f(v) > τ} and V = {v : f(v) ≤ τ}. (Note that these sets

can be arbitrarily complex, e.g., they may comprise multiple dis-

joint regions of Rd.) The basic protocol is now quite simple: Each

site monitors its delta vector ∆vj and, with each update, checks

whether its bounding ball B(e + 1
2
∆vj ,

1
2
‖∆vj‖) is monochro-

matic, i.e., all points in the ball lie within the same region (V or

V ). If this is not the case, we have a local threshold violation, and

the site communicates its local ∆vj to the coordinator. The coor-

dinator then initiates a synchronization process that typically tries

to resolve the local violation by communicating with only a subset

of the sites in order to “balance out” the violating ∆vj and ensure

the monochromicity of all local bounding balls [31]. In the worst

case, the delta vectors from all k sites are collected, leading to an

accurate estimate of the current global statistics vector, which is by

definition monochromatic (since all bounding balls have 0 radius).

In more recent work, Sharfman et al. [25] demonstrate that their

geometric monitoring method can employ properties of the func-

tion and the data to guide the choice of a global reference point and

local bounding ellipsoids for defining the local constraints. Further-

more, they show that the local bounding balls/ellipsoids defined by

the geometric method are actually special cases of a more general

theory of Safe Zones (SZs), which can be broadly defined as convex

subsets of the admissible region of a threshold query. It is not diffi-
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cult to see that, as long as the local drift vectors stay within such a

SZ, the global vector is guaranteed (by convexity) to be within the

admissible region of the query [25].

3. SKETCH­BASED APPROXIMATE GEO­

METRIC MONITORING
In this section, we develop our approach for geometric moni-

toring of non-linear, inner-product queries using AMS sketches.

The sketching idea offers an effective streaming dimensionality-

reduction tool that significantly expands the scope of the origi-

nal geometric method [31], allowing it to handle massive, high-

dimensional distributed data streams in an efficient manner with

approximation-quality guarantees. The key technical observation is

that, by exploiting properties of the AMS estimator function, geo-

metric monitoring can now take place in a much lower-dimensional

space, allowing for communication-efficient monitoring. Effec-

tively dealing with the highly non-linear median operator in the

AMS estimator also mandates novel algorithmic solutions. We start

by showing how our approximate function monitoring problem can

be transformed into low-dimensional threshold crossing queries for

the geometric method. To simplify notation, in the remainder of

this section, we use ṽi to denote the AMS sketch at remote sites

and let ṽ =
∑

j
ṽj denote the global AMS sketch of the entire dis-

tributed stream; similarly, ṽ
p
j , ṽp =

∑

i
ṽ
p
j denote the local/global

sketch values last communicated to the coordinator.

3.1 From Threshold Crossing to Approximate
Function Monitoring

Consider the task of monitoring (at the coordinator) the value of

a function f() over the (full) global statistics vector v to within θ
relative error. (Our discussion here focuses on relative error – the

case of monitoring to within bounded absolute error can be handled

in a similar manner, e.g., using the absolute to relative error trans-

formation outlined under Theorem 2.1.) Since the coordinator only

holds the estimated value of the global statistics vector vp based on

the most recent site updates, our monitoring protocol would have to

guarantee that the estimated function value carries at most θ rela-

tive error compared to the up-to-date value f(v) = f(v(t)), that is

f(vp) ∈ (1±θ)f(v), which is obviously equivalent to monitoring

two threshold queries on f(v):

f(v) ≥ f(vp)

1 + θ
and f(v) ≤ f(vp)

1− θ
.

Now, since we assume that the remote sites only maintain AMS

sketches of their local vectors, all we have at our disposal are the

sketched versions of the v and vp vectors (denoted by ṽ and ṽp,

respectively), and the corresponding function values are approxi-

mated through the AMS estimator function fAMS() (Theorem 2.1).

This, of course, implies a sketching error ǫ in the function val-

ues which can be bounded with the help of Theorem 2.1 so that

fAMS(ṽ) ∈ (1± ǫ)f(v) with high probability (whp). Since our end

goal is to guarantee that the sketch-based estimate available at the

coordinator fAMS(ṽ
p) is within θ relative error, the above threshold

monitoring conditions become:

f(v) ≥ fAMS(ṽ
p)

1 + θ
and f(v) ≤ fAMS(ṽ

p)

1− θ
,

and, since fAMS(ṽ) ∈ (1±ǫ)f(v), it is not difficult to see that these

two conditions are satisfied (whp) as long as:

fAMS(ṽ) ≥
fAMS(ṽ

p)(1 + ǫ)

1 + θ
and fAMS(ṽ) ≤

fAMS(ṽ
p)(1− ǫ)

1− θ
.

(1)

These are exactly the threshold conditions that our approximate

function monitoring protocols will need to track. Note that fAMS(ṽ
p)

in the above expression is a constant (based on the latest commu-

nication of the coordinator with the remote sites). When either of

the above conditions is violated, some (possibly all) remote sites

must flush their current local stream estimates to the coordinator,

updating ṽp so that the difference between fAMS(ṽ) and fAMS(ṽ
p)

is again small. Also, observe that the condition 1+ǫ
1+θ
≤ 1−ǫ

1−θ
always

holds as long as θ ≥ ǫ, which is obviously the case (the overall

error guarantee cannot be tighter than the incurred sketching error).

As discussed earlier, for remote site j, ṽj denotes the sketch of

local stream updates, and ṽ
p
j the sketch last flushed to the coor-

dinator. Exploiting the linearity of AMS sketches, remote site j
maintains ∆ṽj = ṽj − ṽ

p
j , corresponding to stream updates since

the last flush. At the time of the next flush, the remote site simply

transfers ∆ṽj to the coordinator and resets its local delta sketch to

zero. (If the stream updates sketched in ∆ṽj are few, in order to

reduce communication cost, the remote site may send the updates

verbatim to the coordinator.)

3.2 Applying the Geometric Method: Overview
Having reduced approximate distributed stream monitoring to

appropriate threshold-crossing conditions (Eqn. (1)), we now turn

our attention to the issue of effectively applying the geometric method

to the problem at hand. A direct application would take the dis-

tributed stream sketch ṽ as the global statistics vector, scaling each

local sketch ṽj by the number of sites k to obtain the local statistics

vectors (in order to satisfy the convex combination requirement of

the geometric method); then, the geometric method could be em-

ployed to monitor the two threshold conditions on fAMS(ṽ) in the

(n×m)-dimensional sketching space (Section 2).

Unfortunately, such a direct application of the geometric method

turns out to perform poorly in practice, giving high communication

overheads. The problem here is that, even though sketch vectors

are a compressed, (n ×m)-dimensional representation of the full

stream, they can still get fairly large, especially when tight error

bounds are required. Thus, when a local threshold violation occurs

at a remote site, it triggers a balancing process that requires some

of the sites to transmit their local statistics (i.e., sketches) to the

coordinator, imposing high communication overheads.

To address this issue, we develop a novel technique that allows

us to track the threshold conditions on fAMS(ṽ) through geometric

monitoring in a much lower-dimensional space. More specifically,

consider a sketch x as a two-dimensional n×m array, and let x[i]
(i = 1, . . .m) denote the n-vector corresponding to the ith column

of the sketch matrix. We define the local statistics vector for remote

site j as the m-dimensional error vector dj , where

dj [i] = ‖∆ṽj [i]‖ = ‖ṽj [i]− ṽ
p
j [i]‖,

for i = 1, . . . ,m, and the global statistics vector as the (m-dimen-

sional) average error vector d = 1
k

∑k

j=1 dj . In what follows, we

show how to construct functions Fu() and Fl() of d that provide

lower and upper bounds on fAMS(ṽ); that is,

Fl(d) ≤ fAMS(ṽ) ≤ Fu(d).

We can then monitor the threshold-crossing conditions on fAMS(ṽ)
(Eqn. (1)) using the geometric method for Fu(d) and Fl(d) in the

m-dimensional space of error vectors d. It is important to note

that this optimization implies huge communication savings: Sketch

matrices are typically very “thin”, i.e., n >> m, since n depends

quadratically on the sketching error ǫ, whereas m depends only

logarithmically on the desired confidence δ [2, 1, 9, 15].
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Another major technical challenge that arises is how to effec-

tively test the monochromicity of bounding balls in the resulting

lower-dimensional space with respect to threshold conditions in-

volving the highly non-linear median operator present in the AMS

estimator (as well as the upper/lower bound functions Fu() and

Fl()). Our techniques and analyses make use of three well-known

properties of the median operator:

Monotonicity: If x[i] ≤ y[i] for all i, then mediani{x[i]} ≤
mediani{y[i]}.

Distributivity: For any monotone function f(),
mediani{f(x[i])} = f(mediani{x[i]}).

Homogeneity: ∀λ ∈ R, mediani{λx[i]} = λmediani{x[i]}.

We propose a number of novel algorithmic techniques to address

the aforementioned technical challenges for three different types of

distributed stream queries of high practical interest. We start with

the easier cases of L2-norm (i.e., self-join) and range queries, and

then extend our approach to the case of general inner-product (i.e.,

binary-join) queries.

3.3 Monitoring Self­Joins
In the case of (approximate) self-join/L2-norm queries, our goal

is to track an estimate of the (squared) norm of a frequency vector

using AMS sketches. Thus, we need to monitor the values of the

AMS estimator function

fAMS(ṽ) = median
i=1,...,m

{ 1
n

n
∑

l=1

(ṽ[l, i])2} = median
i=1,...,m

{ 1
n
‖ṽ[i]‖2}

(2)

where ṽ is an n×m-sized AMS sketch and ṽ[i] is the ith-th column

of the sketch. Using the distributivity of the median operator, the

threshold-crossing conditions in Eqn. (1) become:
√

n
1 + ǫ

1 + θ
fAMS(ṽ

p) ≤ median
i=1,...,m

{‖ṽ[i]‖} ≤
√

n
1− ǫ

1− θ
fAMS(ṽ

p).

We now develop “safe” threshold conditions over Rm for the above

monitoring problem using upper/lower bound functions defined over

the m-dimensional error vector d. By definition, at site j, dj [i] =
‖ṽj [i]− ṽ

p
j [i]‖; thus, applying the the triangle inequality, we have

‖ṽ[i]− ṽ
p[i]‖ ≤

k
∑

j=1

‖ṽj [i]− ṽ
p
j [i]‖ =

k
∑

j=1

dj [i] = kd[i], (3)

or, equivalently,

‖ṽp[i]‖ − kd[i] ≤ ‖ṽ[i]‖ ≤ ‖ṽp[i]‖+ kd[i].

Then, by monotonicity of the median, it is sufficient to monitor the

following threshold conditions over d ∈ R
m:

Fu(d) = median
i
{‖ṽp[i]‖+ kd[i]} ≤

√

n
1− ǫ

1− θ
fAMS(ṽ

p)

Fl(d) = median
i
{‖ṽp[i]‖ − kd[i]} ≥

√

n
1 + ǫ

1 + θ
fAMS(ṽ

p).

Geometric Monitoring for the Median. By dividing both sides of

the above threshold conditions over Rm by±k and by virtue of the

homogeneity of the median, both conditions take the general form

F (d) = median
i=1,...,m

{a[i] + d[i]} ≤ ζ,

where a is a constant m-dimensional vector and ζ ∈ R.

Algorithm 1: Computing the distance of a vector to the region

defined by a median threshold.

Data: c = [c[1], . . . , c[m]], a = [a[1], . . . ,a[m]]:
m-dimensional vectors; ζ: real.

Result: The distance of c to the region

{x ∈ R
m|mediani{a[i] + x[i]} ≥ ζ}.

begin
let z = a+ c

Sort(z, ascending)

r = 0
for i←− ⌊m+1

2
⌋ to m do

if z[i] < ζ then

r += (ζ − z[i])2

z[i] = ζ

return ρj =
√
r

end

To monitor such conditions using the geometric method, we must

be able, given a bounding ball B(c, ρ) in R
m, to efficiently decide

whether the ball is monochromatic; that is, whether mediani{a[i]+
x[i]) ≤ ζ, for all x ∈ B(c, ρ), This can be done by determining

the Euclidean distance ρζ of the ball center c from the closest point

in the inadmissible region Z = {x ∈ R
m| F (x) ≥ ζ}; then, the

ball B(c, ρ) is monochromatic if and only if ρ ≤ ρζ .

We now show how to efficiently compute this distance to the in-

admissible region. Clearly, if mediani{a[i]+c[i]} ≥ ζ, then ρζ =
0. Else, we can employ a greedy algorithm to find a point z on

the boundary of the inadmissible region Z (with mediani{a[i] +
z[i]}) = ζ), such that no other point in Z is closer to the ball

center c (note that this point z is not necessarily unique). Algo-

rithm 1 constructs such a boundary point z in a greedy manner:

Starting with z = a+ c, it takes all coordinates from rank ⌊m+1
2
⌋

to rank m that are < ζ and sets them equal to ζ in order to reach

the boundary; then, it returns the distance ρζ = ‖c− z‖. The fol-

lowing theorem summarizes our analysis (due to space constraints,

the proof is deferred to the full paper).

THEOREM 3.1. Algorithm 1 correctly computes the minimum

Euclidean distance of point c ∈ R
m from the inadmissible region

Z = {x ∈ R
m|mediani{a[i] + x[i]} ≥ ζ} in time O(m logm).

3.4 Monitoring Range Aggregates
We now turn our attention to a different special type of inner-

product queries, namely the inner product of a distributed data

stream with a constant vector b. An important special case here

is that of range aggregates, in which the constant vector b simply

contains non-zero values for a subset S of values in the joint data

distribution in the streaming vector v, and zero everywhere else;

thus, b · v =
∑

i∈S
b[i]v[i], i.e., the distribution aggregate (e.g.,

the number of tuples) in range S. These aggregates can, of course,

be estimated using an AMS sketch estimator fAMS(ṽ, b̃) (where b̃

is the constant sketch vector for b), with the quality guarantees out-

lined in Theorem 2.1. Such approximate range aggregates over

AMS sketches have been utilized in several important streaming

applications, including the construction of effective quantile, his-

togram, and wavelet summaries over streaming data [9, 19, 20, 32].

For instance, in the case of wavelets, we are interested in estimat-
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ing large wavelet coefficients, which are inner product of the data

distribution with constant wavelet-basis vectors [9].2

Within our framework, we are asked to monitor the estimator

fAMS(ṽ, b̃) = median
i=1,...,m

{ 1
n
b̃[i]ṽ[i]}.

The global statistic again consists of a single sketch (since b is con-

stant). Thus, we can start from Eqn. (3), and we obtain
∣

∣b[i](ṽ[i]− ṽ
p[i])

∣

∣ ≤ ‖b[i]‖‖ṽ[i]− ṽ
p[i]‖ ≤ kd[i]‖b[i]‖,

which yields the two threshold conditions:

median
i
{b[i]ṽp[i] + kd[i]‖b[i]‖} ≤ n

1− ǫ

1− θ
fAMS(ṽ

p, b) (4)

median
i
{b[i]ṽp[i]− kd[i]‖b[i]‖} ≥ n

1 + ǫ

1 + θ
fAMS(ṽ

p, b). (5)

Geometric Monitoring for the Median of Linear Forms. By

dividing both sides by ±k and by virtue of the homogeneity of the

median, both conditions take the form

F (d) = median
i
{a[i] + b[i]d[i]} ≤ ζ

for a, b ∈ R
m, where b has nonnegative components and ζ ∈ R.

The monochromicity question for ball B(c, ρ) can be addressed

in a spirit similar to that of Section 3.3. One small complication

arises by the fact that, in this case, ρζ may be undefined! This may

occur only if some entries in b are zero, so that the inadmissible

region Z = {x ∈ R
m | F (x) ≥ ζ} is empty. To handle this

complication smoothly, we apply a standard algebraic perturbation

trick; we assume that, when b[i] = 0 and a[i] < ζ, then a[i] +
b[i](+∞) ≥ ζ. Thus, region Z is never empty, although some of

its elements may have infinite coordinates.

As earlier, we wish to minimize ρ2ζ =
∑m

i=1(x[i]−c[i])2, where

x ∈ Z. For each i = 1, ...,m, let r2i denote the minimum of

(x[i] − c[i])2, such that a[i] + b[i]x[i] ≥ ζ. It is easy to derive

that,

r2i =











0 if a[i] + b[i]c[i] ≥ ζ

+∞ if a[i] < ζ and b[i] = 0

( ζ−a[i]
b[i]

− c[i])2 if a[i] + b[i]c[i] < ζ and b[i] 6= 0

Then, ρ2ζ is equal to the sum of the (m+1)/2 smallest r2i s (treating

ties arbitrarily). Again, the ball is monochromatic if and only if

ρ ≤ ρζ .

3.5 Monitoring General Inner Products
We now turn our attention to a more complicated monitoring

problem, where the global statistic comprises of the concatenation

of two sketches 〈ṽ, ũ〉 corresponding to two distributed streams,

and the monitored function is the sketch estimate of the inner prod-

uct of the sketched vectors, corresponding to the size of the inner

product (i.e., join):

fAMS(ṽ, ũ) = median
i=1,...,m

{ 1
n

n
∑

l=1

ṽ[l, i]ũ[l, i] }

= median
i=1,...,m

{ 1
n
ṽ[i]ũ[i]}

In addition, error vectors are also concatenated, denoted as 〈dv,du〉.
2Note that sketching is employed here since the range queries of
interest are not fixed (i.e., can vary over time), and a search over
the sketch summary is needed to discover the ranges of interest
as the stream distribution changes. In simpler scenarios where the
range aggregate of interest is fixed, slack-allocation techniques for
tracking linear aggregates can be used (e.g., [24]).

We now develop bounds for the monitored function using the

error vectors. From Eqn. (3), we can write

ṽ[i] = ṽ
p[i] + kdv[i]qv,i and ũ[i] = ũ

p[i] + kdu[i]qu,i,

where qv,i and qu,i are (unknown) vectors of length at most 1.

Thus,

ṽ[i]ũ[i] = ṽ
p[i]ũp[i] + kdv[i]qv,iũ

p[i] + kdu[i]qu,iṽ
p[i]

+ k2
dv[i]du[i]qv,iqu,i

Exact maximization/minimization of the above condition is possi-

ble but yields formulas that are too unwieldy. We provide slightly

weaker upper and lower bounds by treating each term in the above

sum separately. Then, applying median monotonicity, we get the

following conditions:

median
i
{ṽp[i]ũp[i] + kdv[i]‖ũp[i]‖+ kdu[i]‖ṽp[i]‖

+ k2
dv[i]du[i]} ≤ n

1− ǫ

1− θ
fAMS(ṽ

p, ũp)

median
i
{ṽp[i]ũp[i]− kdv[i]‖ũp[i]‖ − kdu[i]‖ṽp[i]‖

− k2
dv[i]du[i]} ≥ n

1 + ǫ

1 + θ
fAMS(ṽ

p, ũp)

Geometric Monitoring for the Median of Bilinear Forms. By

dividing both sides by±k2 and by virtue of the homogeneity of the

median, both conditions take the form:

F (x,y) = median
i
{x[i]y[i] + a[i]x[i] + b[i]y[i] + g[i]} ≤ ζ,

with variables x,y ∈ R
m, and constants a, b, g ∈ R

m, where a, b
have nonnegative components, and ζ ∈ R.

In order to apply the geometric method, we need to determine the

monochromicity of balls of error vectors (in the combined 2m−dim-

ensional space. In other words, we need to determine whether

a ball defined by (x − c)2 + (y − c′)2 ≤ ρ2 (where c, c′ are

m-vectors) intersects the interior of the inadmissible region Z =
{〈x,y〉 ∈ R

2m | F (x,y) ≥ ζ}. For this problem, essentially

the same reasoning applied to the range query case leads us to a

bound-of-ball-radius solution.

Given a ball B(〈c, c′〉, ρ), let some vector 〈x,y〉 ∈ Z be a near-

est neighbor of 〈c, c′〉. Then,

ρ2ζ = (x−c)2+(y−c′)2 =

m
∑

i=1

(x[i]−c[i])2+(y[i]−c′[i])2 (6)

We compute the (squared) distance ρ2ζ of the center 〈c, c′〉 to region

Z by computing, for each component i = 1, . . . ,m of the median
operator in F (), a squared coefficient, r2i . Each r2i corresponds to a

term in the sum of Eqn. (6). Then, the (squared) distance of center

〈c, c′〉 to the boundary of the inadmissible region Z is obtained by

summing the ⌊(m+ 1)/2⌋ smallest r2i .

We now turn to the computation of r2i . To keep notation clean,

we drop the i-index from the variables: Let c and c′ be the i-th co-

ordinates of c and c′, respectively (and, similarly, for a, b, g, x, y).

If cc′+ac+ bc′+g ≥ ζ, then r2 = 0. Else, we need to compute x
and y which minimize (x−c)2+(y−c′)2 but set the corresponding

component of the median to ζ, that is,

r2 = inf{(x− c)2 + (y − c′)2 |xy + ax+ by + g = ζ}

To simplify the problem, first rewrite

xy + ax+ by + g = (x+ b)(y + a) + g − ab
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By substituting p = x+ b and q = y + a, we have:

r2 = inf{(p− α)2 + (q − β)2 | pq = τ},
where α = c+ b, β = c′ + a and τ = ζ + ab− g.

Now, if τ = 0, then r2 = min(α, β); else, substitute q = τ/p
to obtain (p − α)2+ ( τ

p
− β)2. Taking the derivative equal to 0

reduces to the quartic equation

f(p) = p4 − αp3 + τβp− τ2 = 0.

One of its real roots yields the smallest r2 (real roots exist since

f(0) < 0).

3.6 Synchronization Policies for Remote Sites
When the coordinator determines from the geometric method

that there is a global violation in the monitoring (that is, the global

error vector d is no longer within the admissible region), the coor-

dinator signals some remote sites to flush their updates ∆ṽj . While

several flushing policies are possible, we describe two alternatives.

Eager Synchronization. This is a simple policy, where all remote

sites synchronize concurrently. Each remote site j transmits its cur-

rent stream updates ∆ṽj . After the end of this process, the system

reaches a state where, for all j, ṽj = ṽ
p
j and thus dj = d = 0.

Then, new bounds for the error are computed and broadcast to all

remote sites and stream processing begins anew.

Lazy Synchronization. In eager syncronization, even sites whose

local updates are few are forced to synchronize. This may be waste-

ful, and unnecessary; these sites are probably not contributing to

the error significantly. A lazy approach would be for the coordina-

tor to syncronize a minimum number of sites, necessary to restore

global bounds. Remote sites are ranked in (descending) order of the

number of unflushed updates (other choices, such as the distance of

dj to the inadmissible zone, are possible, but our experiments in-

dicated that they do not perform as well). Then, sites are asked to

flush sequentially, until, after some flush, the global error d is again

restored within the (updated) bounds.

4. EXPERIMENTAL STUDY
In this section, we discuss the empirical evaluation of our tech-

niques using real-life data sets. We start by discussing our testbed

and methodology.

Data Sets and Techniques. We use the same real-life data sets

as [7] for our experiments. The first data set, WCup3, was drawn

from the Internet Traffic Archive and contains HTTP requests sent

to the servers hosting the World Cup 1998 web site (totaling ap-

proximately 1.35 billion requests over a three-month period). The

second data set, Cdad4, comprises SNMP network usage data ob-

tained from CRAWDAD (the Community Resource for Archiving

Wireless Data at Dartmouth). It consists of measurements of to-

tal network traffic every five minutes over a four month period at a

large number of access points (approximately 200) inside a corpo-

rate research center (IBM Watson). We tracked the distribution of

the size attribute from WCup and the shortRet attribute from

Cdad, since both these attributes take a very large number of values

thus making streaming estimation challenging.

From each data set, we construct a distributed stream for a num-

ber of remote sites, by hashing the site field from the data set to the

desired number of remote sites in each experiment (WCup relates

to 26 sites and Cdad to 27). Thus, skew in the datasets also appears

3
http://ita.ee.lbl.gov/html/contrib/WorldCup.html

4
http://crawdad.cs.dartmouth.edu/meta.php?name=

ibm/watson#N100AD

in our streams. We focus primarily on self-join queries over these

streams, as these queries are not parameterized and their sketching

error is predictable.

We experimented with our sketch-based geometric monitoring

schemes using both the eager and the lazy synchronization policy

(denoted by GM-lazy and GM-eager, respectively). To demon-

strate their effectiveness, our methods are contrasted against the

sketch-based monitoring technique of [7] (denoted by CG). In a

nutshell, CG is a purely “push-based” monitoring protocol: Each

site j continuously tracks the value of its relative delta sketch vec-

tor norm
‖ṽj−ṽ

p

j
‖

‖ṽj‖
checking that it is below an upper bound that de-

pends on ǫ, θ, and the number of sites (determined by the analysis

in [7]). When that upper bound is violated, the site simply sends

the coordinator its local delta sketch vector (or, the local updates

themselves, if smaller), resetting its delta to zero, and resumes its

local tracking.

All three methods were implemented using the Fast-AMS sketch-

ing technique [7]. Furthermore, since our GM schemes are static

(i.e., do not try to predict the evolution of local/global statistics

vectors), we compared them against the static variant of the CG

technique [7]. As mentioned earlier, the idea of using dynamic pre-

diction models (as suggested in [7]) is essentially orthogonal to the

ideas in this paper, and prediction models have recently been shown

to significantly improve the performance of geometric monitoring

as well [17]. We defer the comparison of the dynamic, prediction-

based variants of the schemes to the full version of this paper.

Metrics.

Our main focus is on the communication cost incurred by our

method. We distinguish two parts in the total communication traf-

fic. The first part, data communication, comprises messages trans-

mitted from remote sites to the coordinator, when remote sites flush

their sketched updates ∆ṽj (or, the list of update records verbatim,

if smaller). The second part comprises the monitoring overhead of

the geometric method, for tracking the global error vector d. Study-

ing data communication in isolation, provides a better contrast to

the method of [7], since this is the only type of communication per-

formed by that method. In their technique, flushes happen by each

remote site when a purely local condition is violated. Our tech-

nique, in its effort to delay flushes (improving the effectiveness of

sketching) by balancing local errors, incurs additional monitoring

overhead. Naturally, we are interested in the cost of this overhead,

relative to the gains in data communication costs.

In addition, the separation of these traffic costs makes sense be-

cause, in principle, it is possible that the coordinator for the pro-

tocols of the geometric method is not co-located in the same ma-

chine with the site which collects the global stream updates. For

example, if communication channels among remote sites are good,

the role of coordinator may be assigned to one of the sites. Fur-

thermore, the traffic patterns of these two types of communication

differ significantly: Data communication traffic consists of large

messages, travelling from remote sites to the collection site only.

Geometric monitoring traffic, on the other hand, consists of small

messages, which can easily fit in a single UDP datagram. Upstream

traffic (from remote sites to coordinator) is almost equal in volume

to downstream traffic (from coordinator to sites). Moreover, down-

stream traffic consists of identical messages to all sites, and thus it

can be implemented by multicast channels. For these reasons, dis-

tinguishing between these types of communication can highlight

the suitability of each technique in different distributed settings.

Another interesting metric is the scalability of our monitoring

schemes as the the number of sites collecting the distributed stream

becomes larger. In the technique of [7], each site’s local condition
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Figure 3: Self-join, data communication costs, as a fraction of the cost of CG.
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Figure 4: Self-join, total communication cost, as a fraction of stream size (WCup dataset).

becomes stricter, causing more frequent flushes—thus, less oppor-

tunity for communication reduction via sketching. For our tech-

nique, data communication is not increased with more sites, in fact

it decreases slightly, as with more nodes there is greater opportu-

nity for balancing. Unfortunately, the overhead of the geometric

method increases significantly with the number of sites, rendering

our techniques non-scalable to many sites. Although a proper study

of scalability is outside the scope of this paper, we present some

scalability results, in order to motivate further research.

Results: Communication Cost. The results presented measure the

communication cost incurred by our methods. In order to contrast

better with the techniques of [7], we do not present absolute cost, by

rather the cost scaled relative to the cost of the CG method (which

has scaled cost 1).

In these experiments, the number of remote sites is 4. We used

two different sketch sizes. In both, δ = 1/27 (thus, sketches had 7

columns each). The first sketch is built for sketching error ǫ = 0.01
and the second, larger sketch is built for ǫ = 0.005.

Fig. 3 depicts the (relative) data communication cost for our

methods, as a function of the total monitoring error θ. It can be

seen that both variants of our technique improve significantly upon

the cost of the previous technique, with the lazy variant performing

much better than the eager one.

A natural question that arises is how much further one can re-

duce data communication in this framework. To quantify the po-

tential improvement, Fig. 3 depicts also the costs of an unrealistic

oracle-based scheme, in which data is collected from sites (using

either the eager or the lazy flushing policy) only when a global vio-

lation occurs. As can be seen, the cost of our lazy strategy is quite

close to that of the lazy oracle-based one, leaving very little room

for improvement. The costs of our eager strategy, while not as close

to the eager oracle-based one, are still near. These results validate

our claim that monitoring in a lower-dimensional space via the er-

ror vector d provides an excellent compromise between monitoring

accuracy and monitoring cost.

The total communication costs are depicted in Fig. 4, as a func-

tion of stream size. For the technique of [7], this cost is equal to

that depicted in Fig. 3, whereas our techniques incur additional cost

related to error monitoring. Still, as shown in , this additional cost

is well-worth. Our techniques still outperform that of [7], some-

times by up to 35%. Note that, to keep to plot clear, we only show

the graphs for the WCup dataset. The graphs for the Cdad dataset

almost coincide.
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Figure 5: Full-join, data and total communication costs, as a fraction of the cost of CG, for sketching error ǫ = 0.01.
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Figure 6: Self-join monitoring overhead as a percent of total cost.

In Fig. 6, the overhead incurred by geometric monitoring is shown

as a function of θ. Although the overhead remains relatively con-

stant as θ increases, it is higher for ǫ = 0.01 (where sketches

are smaller, imposing less per-flush cost). Interestingly, the lazy

method has significantly higher overhead (as a percent) over the

eager method. This is due to two factors; first, because the eager

method exhibits higher data communication, and second, because

intuitively, the lazy method performs more rebalancing, as it delays

flushing some sites. Still, the additional overhead is justified for

the lazy method, because the savings in data communication are

greater.

Other types of monitored queries behave similarly to the self-

join query. Due to space restrictions we only present results for our

most general full-join query. Fig. 5 presents data and total commu-

nication costs for monitoring the join of two streams with sketch-

ing error ǫ = 0.01. From each data set we created two streams by

splitting the records (WCup dataset was split on the clientID

attribute and Cdad was split on the site attribute). The join at-

tributes were the same ones tracked in the self-join experiments

(size and shortRet respectively). The same broad effect, of

much reduced data communication over CG with modest monitor-

ing overhead is observed in this case as well.

4.1 Effect of sketch size
Sketching accuracy ǫ affects communication cost more signif-

icantly than the probability bound δ. As sketch size grows with

log(1/δ), reasonable values of δ (say, from 2−11 to 2−7 will only

affect the sketch size modestly.

Sketching accuracy affects sketch size more strongly, as it in-

creases with O(1/ǫ2). When overall accuracy θ is kept constant,

the increased accuracy of larger sketches implies that the global

sketch will need to be updated less frequently, incurring fewer, al-

beit larger messages. This implies a trade-off between number of

messages and message size.

We now study the trade-off between sketching accuracy (and

sketch size) and monitoring accuracy. Fig. 7 depicts data commu-

nication cost for overall accuracy θ = 0.04, as the ratio ǫ/θ varies

from 0.1 to 0.95. Note that, this cost is normalized (to the total size

of all stream updates), and not relative to CG (which is actually also

shown in the graph).

The analysis of [7] indicates that their technique performs best

for ǫ ≈ θ/2. This is exhibited by our experiments, for our tech-

niques also.

However, the benefit of our technique over that of [7] should

be greater when ǫ is smaller than θ/2, that is, when sketches are
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more accurate and larger, because balancing the global error can be

done more effectively (and cheaply) when monitoring accuracy is

relaxed. Indeed, Fig. 8 shows that the overhead grows significantly

as θ approaches ǫ. Again, note that the lazy technique has higher

overhead than the eager technique (CG has overhead 0 in this plot).

In practice, it may be desirable that applications utilize sketches

of small ǫ, relying on relaxed monitoring precision in order to de-

crease communication. This is because ǫ cannot be adjusted on-

the-fly, once a stream has started to be sketched, whereas adjusting

θ can be done on-line very easily.

4.2 Scalability
To measure the behavior of our techniques as the number of sites

grows, we conducted experiments where the number of sites mon-

itoring a stream increases, keeping other parameters constant.

Fig. 9 depicts data communication cost (relative to the CG method).

As expected, the advantage of our techniques in this aspect of the

cost is maintained over the CG method—in fact, there is slow im-

provement. In fact, the data cost of the lazy synchronization over

CG for WorldCup on streams of 20 sites is 4 times less.

Unfortunately, this does not render our techniques scalable, be-

cause as the number of sites grows, communication overhead be-

comes dominant. Fig. 10 depicts the total y(normalized) commu-

nication cost. It can be seen that the CG method maintains a 50%

saving over the cost of the naive method. In our technique however,
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communication overhead dominates, to the extent that the total cost

becomes 2–4.5 times higher than the cost of the naive method! No-

tice that the lazy method exhibits again about twice the overhead of

the eager method.

The source of the problem seems to be in protocols of the geo-

metric method itself (which we have not adapted in any way in this

paper). As the number of sites increases, opportunities for rebal-

ancing among sites increase commensurably. The protocols of the

geometric method exhaust every opportunity to ensure that a global

violation (triggering flushes) does not occur, without regard for the

cost incurred by this rebalancing.

These results indicate that our techniques are only applicable

beneficially to applications with a modest number of sites (up to

7). They also indicate an important direction for further research,

namely, attempt to capture (at least some of) the benefit in data

communication with a scalable rebalancing approach.

5. CONCLUSIONS
The problem addressed in this paper is monitoring of massive,

distributed streaming data. The recently proposed geometric method

has been combined with AMS sketches towards reducing the com-

munication cost of tracking complex aggregate queries over dis-

tributed streams with strict error bounds.

To reduce communication cost, we utilized AMS sketches, sim-

ilarly to previous work, but in a novel way; we developed a novel

947



geometric method of dynamic balancing of error between remote

sites, improving summarization at the sites before stream data has

to be transferred over the network. We showed how to treat three

fundamental types of aggregate queries: self-join, range and 2-way

join between streams. Finally, we presented extensive empirical

results to validate our performance claims for our techniques and

demonstrate their practical viability.

Extensions and Future Work. In this paper, we applied the stan-

dard geometric method, as it appears in the literature. The tech-

niques we developed exhibit much improved performance com-

pared to previous techniques (particularly that of [7]) but fail to

scale performance-wise when the number of remote sites increases.

A fruitful problem of future research will be to enhance the stan-

dard geometric method, adapting it to the particularities of sketch-

based monitoring, in order to improve scalability. Another promis-

ing direction for extension is the adoption of dynamic predictive er-

ror models. This idea has been shown in [7] to be beneficial to data

communication and may also prove useful in reducing the overhead

of the geometric method. We also intend to combine our techniques

with other types of sketches from the literature and extend their ap-

plicability to new types of queries.
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